Cho tứ diện đều ABCD. Gọi j là góc giữa đường thẳng AB và mặt phẳng (BCD). Tính cos φ
A. cos φ = 1 2
B. cos φ = 0
C. cos φ = 2 3
D. cos φ = 3 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Giao tuyến giữa (SAB) và (CSD) là đường thằng d qua S và song song AB, CD. Gọi I, J theo thứ tự là trung điểm AB, CD
Suy ra SI, SJ cùng vuông góc với d tại S.
Áp dụng định lý cosin trong tam giác ISJ:
Chọn D
Gọi N, K là trung điểm của BB', A'B'
Ta tính được
Áp dụng định lí hàm cosin ta suy ra
Cách 2. Chọn hệ trục tọa độ Oxyz với
Chọn B.
+ Gọi AD = x (x > 0)
+ Kẻdễ dàng chứng minh được
Trong tam giác SBC ta có
Trong tam giác SAD có
Xét tam giác AHK có
Xét tam giác AHK có
Vậy
Đáp án B
Gọi I là trung điểm BD. Khi đó I C M ^ = φ
Ta có: tan φ = I M C I = a a 3 2 = 2 3 3
Đáp án C
Gọi M là trung điểm của
B C ⇒ A M ⊥ B C D M ⊥ B C ⇒ B C ⊥ A D M
Suy ra
A B C ; D B C ^ = A M ; D M ^ = A D M ^ = φ
Gọi O là hình chiếu của A lên
mặt phẳng B C D
⇒ O là trọng tâm của tam giác BCD
⇒ O M = D M 3 = 1 3 . a 3 2 = a 3 6
Tam giác AMO vuông tại O, có
cos A M D ^ = O M A M = a 3 6 : a 3 2 = 1 3
Vậy cos φ = 1 3
Đáp án D.
Giả sử cạnh của tứ diện là a.
Gọi H là tâm đường tròn ngoại tiếp Δ B C D ⇒ A H ⊥ B C D
Ta có A B ∩ B C D = B và A H ⊥ B C D ⇒ A B , B C D ^ = A B , B H ^ = A B H ^
Ta có B H = 2 3 . a 3 2 = a 3 3 ⇒ cos A B H ^ = B H A B = 3 3