Cho hai số phức z 1 = 1 + 2 i , z 2 = 3 − i . Tìm số phức z = z 2 z 1
A. z = 1 10 + 7 10 i
B. z = 1 5 + 7 5 i
C. z = 1 5 − 7 5 i
D. z = − 1 10 + 7 10 i
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(z_1-z_2=1+i-\left(3-7i\right)=1+i-3+7i=-2+8i\)
\(\Rightarrow\left|z_1+z_2\right|=\sqrt{\left(-2\right)^2+8^2}=2\sqrt{17}\)
Đáp án C
Giả thiết
Đặt khi đó
=> Do đó tập hợp điểm biễu diễn z là đường tròn tâm I(0;-3), bán kính R =
10
Chọn D.
Giả sử z=a+bi với a,b ∈ ℝ
Thay vào biểu thức ta được:
\(\Leftrightarrow\left(i^2+4i+4\right)\left(1-i\right)z=4-3i+\left(3+i\right)z\)
\(\Leftrightarrow\left(4i+3\right)\left(1-i\right)z-\left(3+i\right)z=4-3i\) (do \(i^2=-1\Rightarrow i^2+4=3\))
\(\Leftrightarrow\left(4i-4i^2+3-3i\right)z-\left(3+i\right)z=4-3i\)
\(\Leftrightarrow\left(7+i\right)z-\left(3+i\right)z=4-3i\)
\(\Leftrightarrow4z=4-3i\)
\(\Leftrightarrow z=1-\dfrac{3}{4}i\)
bài 1) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)
ta có : \(\left(1+i\right)z+\overline{z}=i\Leftrightarrow\left(1+i\right)\left(a+bi\right)+\left(a-bi\right)=i\)
\(\Leftrightarrow a-b+ai+bi+a-bi=i\Leftrightarrow2a-b+ai=i\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-b=0\\a=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Rightarrow z=1+2i\) \(\Rightarrow W=1+i+z=1+i+1+2i=2+3i\)
\(\Rightarrow\) \(modul\) của số phức \(W\) là : \(\left|W\right|=\sqrt{2^2+3^2}=\sqrt{13}\)
vậy .............................................................................................................
bài 2) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)
ta có : \(z^2\left(1-i\right)+2\overline{z}^2\left(1+i\right)=21-i\)
\(\Leftrightarrow\left(a+bi\right)^2\left(1-i\right)+2\left(a-bi\right)^2\left(1+i\right)=21-i\)
\(\Leftrightarrow\left(a^2+2abi-b^2\right)\left(1-i\right)+2\left(a^2-2abi-b^2\right)\left(1+i\right)=21-i\)\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2\left(a^2+a^2i-2abi+2ab-b^2-b^2i\right)=21-i\)
\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2a^2+2a^2i-4abi+4ab-2b^2-2b^2i=21-i\)
\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2a^2+2a^2i-4abi+4ab-2b^2-2b^2i=21-i\)\(\Leftrightarrow3a^2+6ab-3b^2+a^2i-2abi-b^2i=21-i\)
\(\Leftrightarrow\left(3a^2+6ab-3b^2\right)+\left(a^2-2ab-b^2\right)i=21-i\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a^2+6ab-3b^2=21\\a^2-2ab-b^2=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a^2+6ab-3b^2=21\\3a^2-6ab-3b^2=-1\end{matrix}\right.\)
\(\Rightarrow-ab=-2\Leftrightarrow-a^2b^2=-4\) và \(a^2-b^2=3\)
\(\Rightarrow a^2\) và \(-b^2\) là nghiệm của phương trình \(X^2-3X-4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=4\\-b^2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=4\\b^2=1\end{matrix}\right.\)
\(\Rightarrow\) \(modul\) của số phức \(z\) là \(\left|z\right|=\sqrt{a^2+b^2}=\sqrt{4+1}=\sqrt{5}\)
vậy ...................................................................................................................
hôm sau phân câu 1 ; câu 2 rỏ ra nha bạn . cho dể đọc thôi
Đáp án C.
Ta có
z = z 2 z 1 = 3 − i 1 + 2 i = 3 − i 1 − 2 i 1 + 2 i 1 − 2 i = 1 − 7 i 5 = 1 5 − 7 5 i