Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x + 1 m x − 1 2 + 4 có hai tiệm cận đứng:
A. m < 0
B. m = 0
C. m < 0 m ≠ − 1
D. m < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có y = x 2 x 2 − 2 x − m + x + 1 x 2 − 4 x − m − 1
Điều kiện đặt ra là mẫu có 2 nghiệm => Δ ' = 5 + m > 0 < = > m > − 5
Đáp án B(Cm) có hai đường tiệm cận đứng có hai nghiệm phân biệt khác 1
Điều kiện:mx2+1>0.
- Nếu m=0 thì hàm số trở thành y=x+1 không có tiệm cận ngang.
- Nếu m<0 thì hàm số xác định ⇔ - 1 - m < x < 1 - m
Do đó, lim x → ± ∞ y không tồn tại nên đồ thị hàm số không có tiệm cận ngang.
- Nếu m>0 hì hàm số xác định với mọi x.
Suy ra đường thẳng y = 1 m là tiệm cận ngang của đồ thị hàm số khi x → + ∞ .
Suy ra đường thẳng y = - 1 m là tiệm cận ngang của đồ thị hàm số.
Vậy m>0 thỏa mãn yêu cầu đề bài.
Chọn B.
Đáp án là C
Ta có: y = x + 1 m ( x − 1 ) 2 + 4
có hai tiệm cận đứng thì phương trình g(x)= m ( x − 1 ) 2 + 4 phải có 2 nghệm phần biệt khác -1
< = > m ≠ 0 Δ = − 16 m > 0 g ( − 1 ) = 4 m + 4 ≠ 0 < = > m < 0 m ≠ − 1