K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

Phương pháp:

Sử dụng quan hệ song song trong không gian để chứng minh và chọn đáp án đúng.

Cách giải:

20 tháng 3 2018

Giải bài 2 trang 71 sgk Hình học 11 | Để học tốt Toán 11

a) Do ABC.A’B’C’ là hình lăng trụ nên ta có: BCC’B’ là hình bình hành

Xét tứ giác BCC’B’ có M và M’ lần lượt là trung điểm của BC và B’C’ nên MM’ là đường trung bình

Giải bài 2 trang 71 sgk Hình học 11 | Để học tốt Toán 11

Lại có: AA’// BB’ và AA’= BB’ ( tính chất hình lăng trụ) (2)

Từ (1) và (2) suy ra: MM’// AA’ và MM’ = AA’

=> Tứ giác AMM’A’ là hình bình hành

b) Trong (AMM’A’) gọi O = A’M ∩ AM’, ta có :

Ta có : O ∈ AM’ ⊂ (AB’C’)

⇒ O = A’M ∩ (AB’C’).

c)

Giải bài 2 trang 71 sgk Hình học 11 | Để học tốt Toán 11

Gọi K = AB’ ∩ BA’, ta có :

K ∈ AB’ ⊂ (AB’C’)

K ∈ BA’ ⊂ (BA’C’)

⇒ K ∈ (AB’C’) ∩ (BA’C’)

Dễ dàng nhận thấy C’ ∈ (AB’C’) ∩ (BA’C’)

⇒ (AB’C’) ∩ (BA’C’) = KC’.

Vậy d cần tìm là đường thẳng KC’

d) Trong mp(AB’C’), gọi C’K ∩ AM’ = G.

Ta có: G ∈ AM’ ⊂ (AM’M)

G ∈ C’K.

⇒ G = (AM’M) ∩ C’K.

+ K = AB’ ∩ A’B là hai đường chéo của hình bình hành ABB’A’

⇒ K là trung điểm AB’.

ΔAB’C’ có G là giao điểm của 2 trung tuyến AM’ và C’K

⇒ G là trọng tâm ΔAB’C’.

28 tháng 9 2019

Đáp án C

31 tháng 3 2017

a) Do MM' lần lượt là trung điểm của BC và B'C' nên M'M//BB'//CC'. Vì vậy MM'//AA'.
Vì vậy tứ giác A'M'MA là hình bình hành. Suy ra: AM//A'M'.
b) Trong mp (AA'M'M), ta có: MA' ∩ AM' = K.
     Do \(K\in A'M\)  và \(A'M\in\left(AB'C'\right)\) nên K (AB'C').

c) Có \(O=AB'\cap A'B\) nên \(O\in\left(AB'C'\right)\cap\left(BA'C'\right)\).
 Suy ra: \(d\equiv CO'\).

d) Trong (AB'C'): C'O ∩ AM' = G vì vậy G ( AMM') . Mà O, M' lần lượt là trung điểm AB' và B'C' nên G là trọng tâm của tam giác AB'C'.

 

30 tháng 6 2017

15 tháng 5 2018

21 tháng 5 2017

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Mặt phẳng (Q) và (R) song song với nhau, suy ra giao tuyến của (ACC') với hai mặt phẳng (Q) và (R) song song với nhau. Do đó BD // CC'

Mặt phẳng (Q) và (P) song song với nhau, suy ra giao tuyến của (C'AA') với hai mặt phẳng (Q) và (P) song song với nhau. Do đó B'D // AA'

b) Xét tam giác ACC' ta có BD // CC' suy ra \(\frac{{AD}}{{BC}} = \frac{{AD}}{{DC'}}\)

Xét tam giác C'AA' ta có B'D // AA' suy ra \(ADDC' = A'B'B'C'\)

Do đó, \(\frac{{AB}}{{BC'}} = \frac{{AD}}{{DC'}} = \frac{{A'B'}}{{B'C'}}\)