tìm tất cả các số nguyên n để phân số n+13/n-2 tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có n+13=n-2+15để n+13 lá p/s tối giẩn thì 15 và n+2 là p/s tối giản.
suy ra n+2 ko chia hết cho 3 và 5
suy ra n khác 3k+1 và 5k+3
Gọi (n+13;n-2) là d
Ta có n+13 chia hết cho d; n-2 chia hết cho d
suy ra [(n+13)-(n-2)] chia hết cho d
suy ra 15 chia hết cho d và d thuộc ước của 15={1;3;5;15}
suy ra để n+13/n-2 là phân số tối giản thì d=1 và n+13 không chia hết cho 3; 5; 15
n-2 không chia hết cho 3;5;15
suy ra n+13 không chia hết cho 15
vì 13 không chia hết cho 15 nên n sẽ chia hết cho 15 thì n+13 không chia hết cho 15
n-2 không chia hết cho 15
vì 2 không chia hết cho 15 nên n sẽ chia hết cho 15 thì n-2 không chia hết cho 15
suy ra n chia hết cho 15 thì n+13/n-2 là phân số tối giản
\(S=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2010}\)
\(< \frac{2011}{2011}+\frac{2012}{2012}+\frac{2013}{2013}+\left(\frac{2010}{2010}+\frac{2}{2010}\right)\)\(=1+1+1+1+\frac{2}{2010}=4+2010\)\(< 4\)
Vậy S < 4
Lời giải:
Gọi $d=ƯCLN(n+15,n+2)$
$\Rightarrow n+15\vdots d; n+2\vdots d$
$\Rightarrow (n+15)-(n+2)\vdots d$
$\Rightarrow 13\vdots d$
$\Rightarrow d=1$ hoặc $d=13$.
Để ps đã cho tối giản thì $d\neq 13$
$\Leftrightarrow n+2\not\vdots 13$
$\Leftrightarrow n\neq 13k-2$ với $k$ nguyên.
Giả sử d là ước nguyên tố của n+13 và n-2
Ta có \(n+13⋮d\)
\(n-2⋮d\)
=> \(\left(n+13\right)-\left(n-2\right)⋮d\)
=> \(15⋮d\)
=> \(d\in\){3;5}, vì d nguyên tố, ta chỉ cần xét 1 trường hợp là đủ
Để phân số đã cho tối giản thì \(n+13\) không chia hết cho 3
=> n+13\(\ne3k\left(k\in Z\right)\)
=>\(n\ne3k-13\)
Vây với \(n\ne3k-13\left(k\in Z\right)\) thì phân số đã cho tối giản
Lời giải:
Gọi $d=ƯCLN(n+19, n-2)$
$\Rightarrow n+19\vdots d; n-2\vdots d$
$\Rightarrow (n+19)-(n-2)\vdots d$
$\Rightarrow 21\vdots d$
Để phân số đã cho tối giản, thì $(21,d)=1$, hay $(3,d)=(7,d)=1$
Để $(d,3)=1$ thì $n-2\not\vdots 3$
$\Rightarrow n\neq 3k+2$
Để $(d,7)=1$ thì $n-2\not\vdots 7$
$\Rightarrow n\neq 7m+2$
Vây $n$ không chia 3 dư 2 và không chia 7 dư 2 thì phân số trên tối giản.
Ta sẽ tìm \(n\)để \(\frac{n+19}{n-2}\)không là phân số tối giản.
\(\frac{n+19}{n-2}=\frac{n-2+21}{n-2}=1+\frac{21}{n-2}\)không tối giản suy ra \(\frac{21}{n-2}\)không tối giản
Suy ra \(n-2\inƯ\left(21\right)=\left\{-21,-7,-3,-1,1,3,7,21\right\}\)
\(\Rightarrow n\in\left\{-19,-5,-1,1,3,5,9,23\right\}\).
Vậy \(n\notin\left\{-19,-5,-1,1,3,5,9,23\right\}\)thì \(\frac{n+19}{n-2}\)là phân số tối giản.