Cho tam giác ABC cân tại A. Vẽ AH┴BC.
a, CMR tam giác ABC = tam giác AHC
b, Vẽ HM┴AB, HN┴AC. Chứng minh tam giác AMN cân
c, Chứng minh MN // BC
d, chứng minh AH2 + BM2= AN2 + BH2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H:
\(AB=AC\) (\(\Delta ABC\) cân tại A).
\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).
\(\Rightarrow\Delta AHB=\) \(\Delta AHC\left(ch-gn\right).\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}.\)
Xét \(\Delta AMH\) vuông tại M và \(\Delta ANH\) vuông tại N:
\(AHchung.\\ \widehat{MAH}=\widehat{NAH}\left(\widehat{BAH}=\widehat{CAH}\right).\\ \Rightarrow\Delta AMH=\Delta ANH\left(ch-gn\right).\)
Xét \(\Delta AMN:AM=AN\left(\Delta AMH=\Delta ANH\right).\)
\(\Rightarrow\Delta AMN\) cân tại A.
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)
Mà \(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\) (\(\Delta ABC\) cân tại A).
\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC.\)
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)
b) Ta có: ΔAHB=ΔAHC(cmt)
nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAH}=\widehat{NAH}\)
Xét ΔMAH vuông tại M và ΔNAH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)(cmt)
Do đó: ΔMAH=ΔNAH(cạnh huyền-góc nhọn)
Suy ra: AM=AN(hai cạnh tương ứng)
Xét ΔMAN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>góc BAH=góc CAH
Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>NH=MH
AH^2-AN^2=NH^2
BH^2-BM^2=MH^2
mà NH=MH
nên AH^2-AN^2=BH^2-BM^2
=>AH^2+BM^2=AN^2+BH^2
a: Xet ΔAHB và ΔAHC có
AB=AC
AH chung
HB=HC
=>ΔAHB=ΔAHC
b: Xet ΔAMH vuông tại M và ΔANH vuông tại N co
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN và HM=HN
=>ΔHMN cân tại H
c: Xét ΔABC có AM/AB=AN/AC
nên MN//CB
a, Xét tam giác AHB và tam giác AHC có
AH _ chung
AB = AC
Vậy tam giác AHB~ tam giác AHC (ch-cgv)
Ta có tam giác ABC cân tại A, có AH là đường cao
đồng thười là đường pg
b, Xét tam giác AMH và tam giác NAH có
HA _ chung
^MAH = ^NAH
Vậy tam giác AMH = tam giác NAH (ch-gn)
=> AM = AN ( 2 cạnh tương ứng )
c, Ta có AM/AB = AN/AC => MN // BC
d, Ta có \(AH^2+BM^2=AN^2+BH^2\)
Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)
Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)
Lại có AM = AN (cmt)
\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M)
Vậy ta có đpcm
TU VE HINH NHA
CÓ TAM GIÁC ABC VUÔNG TẠI A :
=>AB=AC( DN TAM GIÁC CÂN)
a) XÉT TAM GIÁC ABH VUÔNG TẠI H VÀ TAM GIÁC ACH VUÔNG TẠI H CÓ:
AB=AC( CMT)
AH CHUNG
=> TAM GIÁC AHB = TAM GIAC AHC( CH- CGV)
b)TAM GIÁC AHB= TAM GIÁC AHC (CM Ở CÂU a)
=>GÓC BAH = GÓC CAH(2 GÓC TƯƠNG ỨNG)
XÉT TAM GIÁC AMH VUÔNG TẠI M VÀ TÂM GIC ANH VUÔNG TẠI N CÓ:
GÓC BAH= GÓC CAH(CMT)
AH CHUNG
=> TAM GIÁC AMH = TAM GIÁC ANH( CH- GN)
=>AM=AN( 2 CÁNH TUONG ỨNG)
=>TAM GIAC AMN CÂN TẠI A( DN TAM GIAC CAN )
K CHO M NHA
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
hay ΔAMN cân tại A
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a: Xét ΔBMH vuông tại M và ΔCNH vuông tại N có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBMH=ΔCNH
b: Ta có: ΔBMH=ΔCNH
nên BM=CN
=>AM=AN
hay ΔAMN cân tại A
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
mà AH⊥BC
nên AH⊥MN
Xin cô là cô ơi mạng nhà em hôm qua bị đứt nên ko nộp được ạ
a, phải là cmr: TG AHB=TG AHC
TG AHB và TG AHC có: AH chung; góc AHC=góc AHB (=90 độ) và AB=AC(GT) tùa 3 điều trên =>TG AHB=TG AHC(cgv.ch)(đpcm) và cũng do đó: góc BAH=góc CAH
b,Nối M->N
TG AHM và TG AHN có: AH chung; góc AMH=góc AHN (=90 độ) và góc BAH=góc CAH(cm trên) từ 3 điều trên=>TG AHM = TG AHN(ch.gn)=>AM=AN
Mặt khác TG AMN có AM=AN(cm trên)=>TG AMN(đn tg cân)
c,Ta có: tg ABC có góc A+ góc B+góc C=180 độ(đlí tổng 3 góc tg) mà góc ABC=góc ACB(t/c tg cân)=>góc ABC=góc ACB=180 độ-góc A(1)
Và tg AMN có góc MAN+góc ANM+góc AMN=180 độ mà góc AMN=góc ANM(t/c tg cân)=> góc ANM=góc AMN=180 độ-góc MAN(đlí tổng 3 góc tam giác)(2)
(1) và (2) suy ra: góc ABC=góc ACB=góc ANM=góc AMN(= góc MAN)
góc ABC=góc AMN mà góc ABC và góc AMN là hai góc SLT=>MN ss BC(đpcm)