Cho hàm số y = f(x) có bảng biến thiên như hình bên dưới .
Mệnh đề nào dưới đây sai?
A. Đồ thị hàm số có 3 tiệm cận
B. Hàm số có 1 điểm cực trị
C. Hàm số nghịch biến trên khoảng ( 3 ; + ∞ )
D. m a x ( - 2 ; + ∞ ) y = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Khẳng định số II sai.
Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng - ∞ ; - 2
Đáp án D
Khẳng định số II sai. Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng ( − ∞ ; − 2 )
Chọn D
Xét hàm số .
Có
.
Ta lại có thì . Do đó thì .
thì . Do đó thì .
Từ đó ta có bảng biến thiên của như sau
Dựa vào bảng biến thiên, ta có
I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.
II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.
III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.
IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.
V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.
Vậy có hai mệnh đề đúng.
ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????
Chọn đáp án B
Phương pháp
Dựa vào đồ thị hàm số xác định các khoảng đơn điệu, các điểm cực trị và GTLN, GTNN của hàm số.
Cách giải
Dựa vào đồ thị hàm số ta thấy hàm số đã cho
+) Đồng biến trên (-1;0) và (1;+∞), nghịch biến trên (-∞;-1) và (0;1).
+) Hàm số có 3 điểm cực trị.
+) Hàm số không có GTLN.
Do đó các mệnh đề (I), (III) đúng.
Phương pháp:
Sử dụng cách đọc đồ thị hàm số.
Cách giải:
Từ đồ thị hàm số ta thấy
+ Đồ thị đi xuống trên khoảng 0;1
nên Hàm số nghịch biến trên
khoảng 0;1. Do đó (I) đúng
+ Đồ thị đi lên trên khoảng 1;0,
đi xuống trên khoảng 0;1và đi
lên trên khoảng 1;2 nên trên
khoảng 1;2 hàm số không
hoàn toàn đồng biến. Do đó (II) sai.
+ Đồ thị hàm số có ba điểm hai
điểm cực tiểu và một điểm cực
đại nên (III) đúng.
+ Giá trị lớn nhất của hàm số là
tung độ của điểm cao nhất của đồ
thị hàm số nên (IV) sai.
Như vậy ta có hai mệnh đề đúng
là (I) và (III).
Chọn B.