Tìm tất cả các giá trị của m để phương trình log 3 2 x − m + 2 log 3 x + 3 m − 1 = 0 có 2 nghiệm x 1 , x 2 sao cho x 1 . x 2 = 27
A. m=25
B. m=1
C. m=4/3
D. m=28/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^3-x^2(m+3)+x(3m+2)-2m=0
=>(x-1)(x^2-(m+2)x+2m)=0
=>x=1 hoặc x^2-(m+2)x+2m=0
Để PT có 3 nghiệm thì (m+2)^2-4*2m>0 và 1^2-(m+2)+2m<>0
=>m<>1 và m<>2
=>x2=(m+2-m+2)/2=2 và x3=(m+2+m-2)/2=m
Để tạo thành cấp sô nhân thì
x1<x2<m hoặc m<x1<x2 hoặc x1<m<x2
=>m*1=2^2 hoặc 2m=1 hoặc m^2=2
=>m=4 hoặc m=1/2 hoặc m=căn 2
x - y = m ( 1 ) x 2 - x y - m - 2 = 0 ( 2 )
Từ (1), ta có y = x - m , thế vào (2) ta được phương trình:
x2 – x (x- m) – m - 2= 0 ⇔ x2 – x2 + mx –m –2 = 0
hay mx –m -2 = 0 (*) .
Hệ phương trình đã cho có nghiệm khi phương trình (*) có nghiệm ⇔ m ≠ 0 .
Chọn B.
1) Ta có : \(mx^2-\left(m+1\right)x+1=\left(x-1\right)\left(2x-1\right)\)
\(\Leftrightarrow mx^2-\left(m+1\right)x+1=2x^2-3x+1\)
Đồng nhất hệ số \(\Rightarrow\hept{\begin{cases}m=2\\m+1=3\end{cases}\Rightarrow m=2}\)
2) Ta có \(\left(x-3\right)\left(ax+2\right)=\left(2x+b\right)\left(x+1\right)\)
\(\Leftrightarrow ax^2+\left(2-3a\right)x-6=2x^2+x\left(2+b\right)+b\)
Đồng nhất hệ số \(\Rightarrow\hept{\begin{cases}a=2\\2-3a=2+b\\-6=b\end{cases}\Rightarrow}\hept{\begin{cases}a=2\\b=-6\end{cases}}\)
Đáp án C
Ta có f x = 2 x + m − 1 x + 1 → f ' x = 3 − m x + 1 2 ; ∀ x ∈ 1 ; 2
TH1: Với m < 3 , suy ra f ' x > 0 ; ∀ ∈ 1 ; 2 ⇒ f 2 = 1 ⇔ 3 + m 3 = 1 ⇔ m = 0 (nhận)
TH2: Với m>3 suy ra f ' x < 0 ; ∀ ∈ 1 ; 2 ⇒ f 1 = 1 ⇔ 1 + m 2 = 1 ⇔ m = 1 (loại)
Vậy m = 0 là giá trị cần tìm
với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?
Đáp án B
Điều kiện x > 0.
Đặt t = log 3 x
Ta có t 2 − m − 2 t + 3 m − 1 = 0 1
Phương trình có 2 nghiệm phân biệt ⇔ 1 có 2 nghiệm
⇒ Δ = m + 2 2 − 4 3 m − 1 > 0 ⇔ m > 4 + 2 2 m < 4 − 2 2 *
Khi đó t 1 + t 2 = log 3 x 1 + log 3 x 2 = log 3 x 1 x 2 = m + 2 ⇔ m + 2 = log 3 27 ⇒ m = 1
Kết hợp với điều kiện * ⇒ m = 1