K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

Đáp án A

Xét PT:

x 3 + 3 x 2 − 9 x + 5 = 0 ⇔ x + 5 x − 1 2 = 0 ⇔ x = 1 x = − 5 ⇒ A 1 ; 0 , B − 5 ; 0

  M x ; y ∈ C ⇒ A M → = x − 1 ; y , B M → = x + 5 ; y điều kiện góc A M B = 90 0      

⇔ A M → . B M → = 0 ⇔ x − 1 x + 5 + y 2 = 0 ⇔ x − 1 x + 5 + x − 1 4 x + 5 2 = 0 ⇔ x − 1 x + 5 1 + x − 1 3 x + 5 = 0

⇔ 1 + x − 1 3 x + 5 = 0  ( do x ≠ 1, x ≠ − 5  )

Xét hàm số f ( x ) = 1 + x − 1 3 x + 5  có:

f ' x = 3 x − 1 2 x + 5 + x − 1 3 = x − 1 2 4 x + 14

Dễ thấy hàm số có một cực tiểu duy nhất x = − 7 2  với GTCT là y<0  . Do vậy PT  f(x)=0 có hai nghiệm hay tồn tại hai điểm M thỏa mãn điều kiện.

10 tháng 3 2018

lo n me may

10 tháng 4 2018

Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả. 
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1). 
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2. 
Giao điểm của hai đường tiệm cận là I(1; 2). 
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là 
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)² 
m = 1/(x - 1)² 
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là 
m' = dy/dx = -1/(x - 1)² 
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là 
mm' = -1 
-1/(x - 1)^4 = -1 
(x - 1)^4 = 1 
(x - 1)² = 1 
x - 1 = ±1 
x = 0 hay x = 2 
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)

10 tháng 4 2018

Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả. 
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1). 
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2. 
Giao điểm của hai đường tiệm cận là I(1; 2). 
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là 
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)² 
m = 1/(x - 1)² 
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là 
m' = dy/dx = -1/(x - 1)² 
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là 
mm' = -1 
-1/(x - 1)^4 = -1 
(x - 1)^4 = 1 
(x - 1)² = 1 
x - 1 = ±1 
x = 0 hay x = 2 
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)

19 tháng 4 2020

2, Giao điểm của hai đường tiệm cận là I(1; 2). 
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là 
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)² 
m = 1/(x - 1)² 
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là 
m' = dy/dx = -1/(x - 1)² 
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là 
mm' = -1 
-1/(x - 1)^4 = -1 
(x - 1)^4 = 1 
(x - 1)² = 1 
x - 1 = ±1 
x = 0 hay x = 2 
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)

20 tháng 12 2022

a: Để (d)//Ox thì m-1=0

=>m=1

b: Thay x=-1 và y=1 vào (d), ta được:

-m+1+m=1

=>1=1(luôn đúng)

c: Thay x=\(\dfrac{2-\sqrt{3}}{2}\) và y=0 vào (d), ta đc:

\(\left(m-1\right)\cdot\dfrac{2-\sqrt{3}}{2}+m=0\)

=>\(\left(m-1\right)\cdot\left(2-\sqrt{3}\right)+2m=0\)

=>\(2m-\sqrt{3}m-2+\sqrt{3}+2m=0\)

=>\(m\left(4-\sqrt{3}\right)=2-\sqrt{3}\)

=>\(m=\dfrac{2-\sqrt{3}}{4-\sqrt{3}}\)

22 tháng 12 2021

a: Thay x=3 và y=0 vào (1), ta được:

\(6-3m=0\)

hay m=2

27 tháng 9 2018

+ Ta có y '   =   f ' ( x ) = a d   -   b c ( c x   +   d ) 2  . Từ đồ thị hàm số y= f’(x)  ta thấy:

Đồ thị hàm số y= f’(x)  có tiệm cận đứng x=1 nên –d/c= 1 hay  c= -d

Đồ thị hàm số y= f’(x )  đi qua điểm (2;2)

⇒ a d   -   b c ( 2 c   +   d ) 2   =   2   ↔ a d   -   b c   =   2   ( 2 c + d ) 2

Đồ thị hàm số y= f’(x)  đi qua điểm (0;2)

⇒ a d   -   b c d 2   =   2   ↔ a d   -   b c   =   2 d 2

Đồ thị hàm số y=f(x)  đi qua điểm (0;3) nên b/d= 3 hay b= 3d

Giải hệ  gồm 4 pt này ta được a=c= -d và b= 3d  .

 Ta chọn a=c= 1 ; b= -3 ; d= -1  

⇒ y   =   x   -   3 x   - 1  

Chọn  D.

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:
a. Vì đths đi qua $A(-2;3)$ nên:

$y_A=(2m+5)x_A-1$

$\Rightarrow 3=(2m+5)(-2)-1\Rightarrow m=\frac{-7}{2}$

b. ĐTHS sau khi tìm được $m$ có pt: $y=-2x-1$. Bạn có thể tự vẽ

c. ĐTHS cắt trục hoành tại điểm có hoành độ -3, tức là đi qua điểm $(-3,0)$

$\Rightarrow 0=(2m+5)(-3)-1$

$\Rightarrow m=\frac{-8}{3}$

16 tháng 11 2023

a: loading...

 

b: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\3x-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=0\end{matrix}\right.\)

Vậy: A(1/3;0)

Tọa độ B là:

\(\left\{{}\begin{matrix}y=0\\-x+3=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\-x=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=3\end{matrix}\right.\)

Vậy: B(3;0)

Tọa độ C là:

\(\left\{{}\begin{matrix}3x-1=-x+3\\y=3x-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x=4\\y=3x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\cdot1-1=2\end{matrix}\right.\)

Vậy: C(1;2)

c: Gọi \(\alpha\) là góc tạo bởi (d1) với trục Ox

\(tan\alpha=a=3\)

=>\(\alpha\simeq71^033'\)