K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

Đáp án A

Gọi E và F là trung điểm của AB và CD ta có: S E ⊥ A B ⇒ S E ⊥ C D ⇒ S E ⊥  giao tuyến của 2 mặt phẳng (SAB) và (SCD) vì giao tuyến này song song với AB.

9 tháng 2 2018

Chọn B.

Phương pháp:

Gọi I, J lần lượt là trung điểm của AB, CD.

2 tháng 2 2017

Đáp án C

Gọi M, N lần lượt là trung điểm của AB và CD

Tam giác SAB cân tại S suy ra S M ⊥ A B  

⇒ S M ⊥ d , với d = ( S A B ) ∩ ( S C D )  

Vì ( S A B ) ⊥ ( S C D ) suy ra S M ⊥ ( S C D )

Kẻ S H ⊥ M N ⇒ S H ⊥ ( A B C D )  

Ta có S ∆ S A B + S ∆ S C D = 7 a 2 10  

 

⇒ S M + S N = 7 a 5

Tam giác SMN vuông tại S nên S M 2 + S N 2 = M N 2 = a 2  

Giải hệ  S M + S N = 7 a 5 S M 2 + S N 2 = a 2

Vậy thể tích khối chóp  V S . A B C D = 1 3 . S A B C D . S H = 4 a 3 25

19 tháng 5 2018

Đáp án C.

9 tháng 12 2019

NV
16 tháng 1

a.

Do AB song song DC nên góc giữa SC và AB là góc giữa SC và CD, cùng là góc SCD

Áp dụng định lý hàm cosin:

\(cos\widehat{SCD}=\dfrac{SC^2+CD^2-SD^2}{2SC.CD}=\dfrac{1}{4}\)

\(\Rightarrow\widehat{SCD}\approx75^031'\)

b.

Gọi O là tâm đáy, do chóp có đáy là hình vuông và các cạnh bên bằng nhau nên chóp là chóp đều

\(\Rightarrow SO\perp\left(ABCD\right)\)

\(\Rightarrow\Delta OAB\) là hình chiếu vuông góc của SAB lên (ABCD)

\(OA=OB=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{AB^2+BC^2}=a\)

Mặt khác OA vuông góc OB (2 đường chéo hình vuông)

\(\Rightarrow S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{a^2}{2}\)

NV
16 tháng 1

a.

Do AD song song BC nên góc giữa SD và BC là góc giữa SD và AD, cùng là góc \(\widehat{SDA}\)

Áp dụng định lý hàm cosin:

\(cos\widehat{SDA}=\dfrac{SD^2+AD^2-SA^2}{2SD.AD}=\dfrac{1}{8}\)

\(\Rightarrow\widehat{SDA}=82^049'\)

b.

Do chóp có các cạnh bên bằng nhau và đáy là hình vuông nên chóp là chóp đều

Gọi O là tâm đáy \(\Rightarrow AC\perp BD\) tại O và \(SO\perp\left(ABCD\right)\)

\(\Rightarrow\Delta OCD\) là hình chiếu vuông góc của tam giác SCD lên (ABCD)

\(OC=OD=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{2AB^2}=a\sqrt{2}\)

\(\Rightarrow S_{OCD}=\dfrac{1}{2}OC.OD=a^2\)

13 tháng 3 2022

undefinedundefinedundefined