tìm gtnn của biểu thức x^4+(3-x)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)
\(A=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
\(A=\left(x^2+5x+4\right)\left(x^2+5x+4+2\right)\)
\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)\)
\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1-1\)
\(A=\left(x^2+5x+5\right)^2-1\ge-1\)
\(A_{min}=-1\) khi \(x^2+5x+5=0\)
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Do \(\left|x-\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow A=\left|x-\dfrac{2}{3}\right|-4\ge-4\)
\(minA=-4\Leftrightarrow x=\dfrac{2}{3}\)
\(E=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)( \(ĐK:x\ne2;x\ne0\))
\(=\frac{x^2}{x-2}.\frac{x^2-4x+4}{x}+3\)
\(=\frac{x^2}{x-2}.\frac{\left(x-2\right)^2}{x}+3=x\left(x-2\right)+3=x^2-2x+3\)
b, \(E=x^2-2x+3=\left(x-1\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)
Vậy GTNN của E là 2 khi x = 1