Tìm tổng các giá trị nguyên của tham số m để hàm số y=mx4+ (m2-25)x2+2 có một điểm cực đại và hai điểm cực tiểu.
A. 10
B. -10
C. 0
D. 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Ta có:
Hàm số y = m x 4 + m 2 - 25 x 2 + 2 có một cực đại và hai cực tiểu
Mà m ∈ Z ⇒ m ∈ 1 ; 2 ; 3 ; 4
Tổng các giá trị của m thỏa mãn là: 10
Đáp án C
TH1: suy ra hàm số có điểm cực đại nhận m=0.
TH2: .
Theo yêu cầu bài toán
.
Vậy là giá trị cần tìm.
Chọn A
Để hàm số có ba cực trị thì trước hết hàm số phải là hàm số trùng phương tức m ≠ 0
Ta có:
Hàm số có 3 cực trị khi và chỉ khi y ' có 3 nghiệm phân biệt
⇔ m 2 - 9 2 m < 0 ⇔ m ( m 2 - 9 ) < 0
Vậy các giá trị cần tìm của m là
Ta có
Suy ra đồ thị có hai điểm cực tiểu là A - m 2 - m + 1 ; y C T và B m 2 - m + 1 ; y C T
Khi đó
Dấu xảy ra khi m=1/2.
Chọn B.