Cho hình nón có đường cao và đường kính đáy cùng bằng 2a. Cắt hình nón bởi mặt phẳng qua trục, diện tích thiết diện bằng
A. 8 a 2
B. a 2
C. 2 a 2
D. 4 a 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cạnh huyền chính bằng đường kính đáy do vậy bán kính đáy r = và đường cao h = r, đwòng sinh l = a.
Vậy Sxq = πrl = ( đơn vị diện tích)
Sđáy = = ( đơn vị diện tích);
Vnón = ( đơn vị thể tích)
b) Gọi tâm đáy là O và trung điểm cạnh BC là I.
Theo giả thiết, = 600.
Ta có diện tích ∆ SBC là: S = (SI.BC)/2
Ta có SO + SI.sin600 = .
Vậy .
Ta có ∆ OIB vuông ở I và BO = r = ;
OI = SI.cos600 = .
Vậy BI = và BC = .
Do đó S = (SI.BC)/2 = (đơn vị diện tích)
Phương pháp:
+) Gọi S là đỉnh hình nón và O là tâm đường tròn đáy của hình nón. Giả sử (P) cắt nón theo thiết diện là tam giác SAB.
+) Gọi M là trung điểm của AB, tính SM, từ đó tính S S A B
Cách giải:
Gọi S là đỉnh hình nón và O là tâm đường tròn đáy của hình nón.
Giả sử (P) cắt nón theo thiết diện là tam giác SAB.
Gọi M là trung điểm của AB ta có