Tìm x:
6 x x = 3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Phương pháp giải:
- Muốn tìm một số hạng ta lấy tổng trừ đi số hạng kia.
- Muốn tìm một thừa số ta lấy tích chia cho thừa số kia.
Lời giải chi tiết:
a)
● x + 3 = 6
x = 6 − 3
x = 3
● x × 3 = 6
x = 6 : 3
x = 2
b)
● 4 + x = 12
x = 12 − 4
x = 8
● 4 × x = 12
x = 12 : 4
x = 3
a: x-4/5=3/7
=>x=3/7+4/5=43/35
b: x+3/7=4/5
=>x=4/5-3/7=13/35
c: 19/20-x=8/5-3/4
=>19/20-x=32/20-15/20=17/20
=>x=2/20=1/10
d: =>4/5*x=2/21
=>x=2/21:4/5=5/42
e: =>x:7/9=6/8
=>x=6/8*7/9=3/4*7/9=21/36=7/12
f: =>x/6=2/3-1/3=1/3
=>x=2
a: x-4/5=3/7
=>x=3/7+4/5=43/35
b: x+3/7=4/5
=>x=4/5-3/7=13/35
c: 19/20-x=8/5-3/4
=>19/20-x=32/20-15/20=17/20
=>x=2/20=1/10
d: =>4/5*x=11/21
=>x=55/84
e: =>x=6/8*7/9=42/72=7/12
f: =>x/6=2/3-1/3=1/3
=>x=2
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
(5x + 3⁴).6⁸ = 6⁹.3⁴
5x + 3⁴ = 6⁹.3⁴ : 6⁸
5x + 81 = 6.81
5x = 6.81 - 81
5x = 81.(6 - 1)
5x = 81.5
x = 81.5 : 5
x = 81
a: =>x=3/7+3/5=15/35+21/35=36/35
b: =>x/35=4/5-5/7=28/35-25/35=3/35
=>x=3
c: =>x<3/4+8/4=11/4
=>\(x\in\left\{0;1;2;3\right\}\)
d: =>5/3<x<5/6+24/6=29/6
=>\(x\in\left\{2;3;4\right\}\)
e: =>x<10/12-9/12=1/12
=>x=0
f: =>2/3<x<12/6-5/6=7/6
=>x=1
a) \(M(x) = A(x) + B(x) \\= 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4} \\=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)\\= {x^2} - 2.\)
b) \(A(x) = B(x) + C(x) \Rightarrow C(x) = A(x) - B(x)\)
\(\begin{array}{l}C(x) = A(x) - B(x)\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - ( - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4})\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 + 5{x^2} - 7{x^3} - 5x - 4 + 4{x^4}\\ =(4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)\\= 8{x^4} - 14{x^3} + 11{x^2} - 10x - 10\end{array}\)
1/8 bn nha
\(6\times x=\frac{3}{4}\)
\(x=\frac{3}{4}:6\)
\(x=\frac{1}{8}\)
@Nghệ Mạt
#cua