K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

17 tháng 12 2019

Chọn B

Ta có g’(x) = f’(x) + 1.

 Đồ thị của hàm số y= g’(x) là phép tịnh tiến đồ thị của hàm số y= f’(x) theo phương song song  với Oy lên trên 1 đơn vị.

Khi đó đồ thị hàm số y= g’(x) cắt trục hoành tại hai điểm phân biệt.

=> Hàm số y= g(x) có 2 điểm cực trị.

29 tháng 8 2019

Đáp án B

Ta có

.

.

Hình bên dưới là đồ thị của hàm số .

Dựa vào hình vẽ ta thấy đồ thị hàm số cắt nhau tại 2 điểm phân biệt, đồng thời khi hoặc , khi .

Do đó đổi dấu qua , .

Vậy hàm số g(x) có hai điểm cực trị.

25 tháng 12 2019

21 tháng 2 2019

27 tháng 7 2018

Đáp án D

2 tháng 11 2017


6 tháng 12 2017

30 tháng 7 2019

Ta có: 

Với x< - 3 ta có:  f’ (x)< x= 1  suy ra hàm số nghịch biến trên khoảng ( -∞; -3)

+ xét hàm số g( x) ; ta cần so sánh g( -3)  và g( 3)

Ta có g(x) = 2f(x) –( x+ 1) 2 nên g’ (x) =2f’ (x) -2(x+1)

Phương trình  (Dựa vào đồ thị hàm số y= f’ (x)) .

Bảng xét dấu của g’(x)

Dựa vào bảng xét dấu, ta được  m a x [ - 3 ; 3 ] g ( x ) = g ( 1 ) .

Dựa vào hình vẽ lại có 

Do đó g( 1) – g( -3) > g( 1) – g( 3) hay g( 3) > g( -3) .

Suy ra GTNN của hàm số trên đoạn [- 3; 3] là  g( -3) .

Chọn B.

20 tháng 1 2017

Đáp án B

Phương pháp: Lập bảng biến thiên của g(x) và đánh giá số giao điểm của đồ thị hàm số y = g(x) và trục hoành.

Cách giải: 

Xét giao điểm của đồ  thị  hàm sốy = f’(x) và đường thẳng y = -x ta thấy, hai đồ  thị  cắt nhau tại ba điểm có hoành độ là: -2;2;4 tương ứng với 3 điểm cực trị của y = g(x).

Bảng biến thiên:

Dựa vào bảng biến thiên ta thấy  => phương trình g(x) = 0 không có nghiệm