Cho hình chóp S.ABC đáy ABC là tam giác vuông cân với BA = BC = a, SA = a vuông góc với đáy,cosin góc giữa hai mặt phẳng (SAC) và (SBC) bằng:
A. 1 2
B. 2 2
C. 3 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(\Delta ABC\) là tam giác vuông cân và \(BA=BC\) nên \(\Delta ABC\) vuông cân tại \(B \) và \(AC=a\sqrt{2}\).
Trong mp (\(SAB \)) dựng \(AK\perp SB\) với \(K\in SB\)
Trong mp \((SAC)\) dựng \(AH\perp SC\) với \(H\in SC\)
Do \(SA\perp BC\) và \(AB\perp BC\) nên \(BC\perp\left(SAB\right)\)
\(\Rightarrow\) \(\left(SAB\right)\perp\left(SBC\right)\) \(\Rightarrow AK\perp\left(SBC\right)\)
\(\Rightarrow AK\perp SC\) mà \(AH\perp SC\) nên \(SC\perp\left(AHK\right)\)
\(\Rightarrow HK\perp SC\) mà \(\Delta AHK\) vuông tại \(K\) nên góc giữa 2 mp cần tính là \(\widehat{AHK}\)
Áp dụng hệ thức lượng trong tam giác vuông ta tính được \(AH=\dfrac{a\sqrt{2}}{\sqrt{3}}\) và \(AK=\dfrac{a}{\sqrt{2}}\)
\(\Rightarrow\sin\widehat{AHK}=\dfrac{\sqrt{3}}{2}\) \(\Rightarrow\cos\widehat{AHK}=\dfrac{1}{2}\)
Đáp án A
Kẻ B F ⊥ A C
Suy ra góc giữa hai mặt phẳng (SAC) và (SBC) là B H F ^