cho 5 số tự nhiên mỗi số chỉ dc viết dưới dạng lũy thừa của 2 va3
cm tồn tại 2 số mà tích của chung la số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì số chính phương là bình phương của 1 số tự nhiên
nên \(13^2\)là số chính phương
8=2^3 ; 20=20^1 ; 60=60^1 ; 90=90^1
16=2^4 ; 27=3^3 ; 81=3^4 ; 100=10^2
Làm bằng pascal thì những bài như thế này thì test lớn chạy không nổi đâu bạn
#include <bits/stdc++.h>
using namespace std;
long long n,a,b;
int main()
{
cin>>n;
a=1;
while (pow(a,3)<=n)
{
a++;
}
if (pow(a,3)==n) cout<<"YES";
else cout<<"NO";
cout<<endl;
b=1;
while (pow(5,b)<=n) do b++;
if (pow(5,b)==n) cout<<"YES";
else cout<<"NO";
cout<<endl<<pow(n,n)%7;
return 0;
}
a) \(8=2^3\)
\(16=4^2\)
\(27=3^3\)
\(81=9^2\)
\(100=10^2\)
b) \(1000=10^3\)
\(1,000,000=10^6\)
\(1,000,000,000=10^9\)
100.000 } 12 chữ số 0 = 10^12
\(\begin{array}{l}a){\rm{ }}\left( { - 2} \right).\left( { - 2} \right).\left( { - 2} \right) = {( - 2)^3}\\b){\rm{ }}\left( { - 0,5} \right).\left( { - 0,5} \right) = {( - 0,5)^2}\\c)\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} = {(\frac{1}{2})^4}\end{array}\)