K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

Tìm số nguyên n để n - 4 chia hết cho n - 1

Ta có : n - 4 chia hết cho n - 1

=> n - 1 - 3 chia hết cho n - 1

=> 3 chia hết cho n - 1

=> n - 1 \(\in\)Ư(3) = {+1;+3}

Với n - 1 = 1 => n = 2

Với n - 1 = -1 => n = 0

Với n - 1 = 3 => n = 4

Với n - 1 = -3 => -2

Vậy n \(\in\) {2;0;4;-2}

30 tháng 1 2016

kho qua minh khong bit

17 tháng 12 2021

Bài 3: 

=>-3<x<2

3 tháng 2 2016

3x+12=2x-4

3x-2x=-4-12

1x=-16

   x=-16:1    =>x=-16

14-3x=x+4

-3x-x=4-14

-4x=-10

x=-10:-4   =>x=-10/-4

2(x-2)+7=x-25

2x-4+7=x-25

2x-x=-25+4-7

2x=-28

x=-28;2  =>x=-14

|a+3|=-3

a+3=-3 hoặc a+3=3

a=-6 hoặc a=0

3 tháng 2 2016

tìm x thì dễ rồi , mình làm tìm n nhá

a, ta có n+5=n-1+6

mà n-1 chia hết cho n-1

suy ra để n là số nguyên thì 6 chia hết cho n

suy ra n là ước của 6 ={

±1;

±6}

rồi bạn lập bảng tìm x vậy nhá , viết kí hiệu thay chữ dùm mình

22 tháng 12 2015

1)(2x+1)(y-4)=12

Ta xét bảng sau:

2x+11-12-23-34-46-612-12
2x0-21-32-43-55-711-13
x0-1  1-2      
y-412-12  4-4      
y16-8  80      

 

2)n-7 chia hết cho n+1

n+1-8 chia hết cho n+1

=>8 chia hết cho n+1 hay n+1EƯ(8)={1;-1;2;-2;4;-4;8;-8}

=>nE{2;0;3;-1;5;-3;9;-7}

3)|x+3|+2<4

|x+3|<4-2

|x+3|<2

=>|x+3|=1      và      |x+3|=0

=>x+3=1               hoặc            x+3=-1                 hay              x+3=0

x=1-3                                       x=-1-3                                     x=0-3

x=-2                                        x=-4                                        x=-3

Vậy x=-2;-3 hoặc x=-4

 

22 tháng 12 2015

mk nhớ là làm bài này rồi mà nhỉ, bạn kéo thanh cuốn xuống xíu là thấy bài của mk

23 tháng 1 2017

hơi nhiều nhỉ

23 tháng 1 2017

Sao bạn đăng nhiều thế !

hoa mắt thì làm sao giải cho bạn được

24 tháng 11 2018

n=3

x=7:

30 tháng 8 2016

Bài 1 :

Ta có :

\(n^n-n^2+n-1\)

\(=\left(n^n-1^n\right)-\left(n^2-n\right)\)

\(=\left(n-1\right)\left(n^{n-1}+n^{n-2}+n^{n-3}...+n^1+1\right)-\left(n-1\right)n\)

\(=\left(n-1\right)\left(n^{n-1}+n^{n-2}+...+n+1-n\right)\)

\(=\left(n-1\right)\left(n^{n-1}+n^{n-2}+...+n^1+n^0-n\right)\)

Thấy \(n^{n-1}+n^{n-2}+...+n^1+n^0\)có \(n\)số hạng, nên khi trừ đi \(n\)cũng như trừ mỗi số hạng cho 1. ( Vì n số , mỗi số trừ đi 1 thì trừ tổng cộng là \(n.1=n\))

Do đó ta có :

\(=\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n^2-1\right)+\left(n-1\right)+\left(1-1\right)\right]\)

Nhận xét :

\(n^{n-1}-1=\left(n-1\right)\left(n^{n-2}+n^{n-3}+...+n+1\right)\)chia hết cho \(n-1\)

\(n^{n-2}-1=\left(n-1\right)\left(n^{n-3}+n^{n-4}+...+n+1\right)\)chia hết cho \(n-1\)


\(...\)

\(n-1\)chia hết cho \(n-1\)


\(1-1=0\)chia hết cho \(n-1\)

\(\Rightarrow\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n^2-1\right)+\left(n-1\right)+\left(1-1\right)\)chia hết cho \(n-1\)

\(\Rightarrow\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n^2-1\right)+\left(n-1\right)+\left(1-1\right)\right]\)chia hết cho \(n-1\)

\(\Rightarrow n^n-n^2+n-1\)chia hết cho \(n-1\)

Vậy ...

Bài 2 :

Ta có :

\(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)\)

\(=\left(x-2\right)\left[x^2+2x+7+2\left(x+2\right)-5\right]\)

\(=\left(x-2\right)\left(x^2+4x+6\right)\)

\(=\left(x-2\right)\left[\left(x^2+4x+4\right)+2\right]\)

\(=\left(x-2\right)\left[\left(x+2\right)^2+2\right]=0\)

Mà \(\left(x+2\right)^2+2\ge0+2=2>0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

Vậy ...