Cho tam giác ABC. Từ B kẻ đường thẳng cắt AC ở D, từ C kẻ đường thảng cắt AB ở E. Hai đường thẳng BD và CE cắt nhau ở I. Biết rằng diện tích tam giác BIE = 6 cm2, diện tích tam giác BIC = 9 cm2 và diện tích tam giác CID = 12 cm2. Tính diện tích tứ giác ADIE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Cái dữ liệu tìm diện tích tam giác BED là bỏ nha bạn)
\(S_{BMa}=S_{AMa}\Rightarrow S_{BMN}=S_{AaN}\)
\(S_{CMP}=S_{AMP}\Rightarrow S_{CMN}=S_{APN}\)
\(\Rightarrow S_{MBC}=S_{BMN}+S_{CMN}=S_{AaN}+S_{APN}=S_{APa}=\frac{1}{3}S_{ABC}\)
\(\Rightarrow S_{BCM}=516:3=172cm^2\)
ta có\(AH=\frac{1}{4}AB=3cm\)
\(\frac{BH}{BA}=\frac{HD}{AC}=\frac{AE}{AC}=\frac{3}{4}\Rightarrow AE=\frac{3}{4}AC=12cm\)
Vậy điện tích AEDH là \(3\times12=36cm^2\)
S(BMQ) = S(AMQ) => S(BMN) = S(AQN)
S(CMP) = S(AMP) => S(CMN) = S(APN)
=> S(MBC) = S(BMN) + S(CMN) = S(AQN) + S(APN) = S(APQ) = 1/3 x S(ABC)
=> S(MBC) = 516 : 3 = 172 (cm2)
Đáp án:
172cm2
Giải thích các bước giải:
Hình mình ko biết vẽ chỗ nào trên máy tính nên mong bn thông cảm ạ !
S(BMQ)=S(AMQ)=>S(MNQ)=S(AMQ)
S(CMP)=S(AMP)=> S(CMP)=S(AMP)
=>S(MBC)=S(BMN)+S(CMN)=S(AQN)+S(APN)=S(APQ)=`1/3`x S(ABM)
=>S(MBC)=516 : 3 = 172 ( cm2 )
Đáp số : 172 cm2
288 cm2