Số có giá trị nguyên của tham số m thuộc đoạn - 2019 ; 2 để phương trình x - 1 log 3 4 x + 1 + log 5 2 x + 1 = 2 x - m có đúng hai nghiệm thực là
A. 2021
C. 1
C. 2
D. 2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
TXĐ: D = R
Ta có: y ' = 3 x 2 - 6 x + 3 m
Để hàm số đã cho nghịch biến trên 1 ; 2
thì y ' ≤ 0 , ∀ x ∈ 1 ; 2 và bằng 0 tại hữu hạn điểm
Hàm số y = x - 1 2 đồng biến trên 1 ; + ∞ nên cũng đồng biến trên 1 ; 2
Lại có m ∈ - 10 ; 10 và m ∈ Z nên m ∈ - 10 ; - 9 ; . . ; 0
Vậy có 11 giá trị của m
Có
Phương trình này có hai nghiệm
• Với ta cần tìm điều kiện để phương trình này có 4 nghiệm phân biệt thuộc
Với t = -1 phương trình (1) cho đúng một nghiệm x = π ; với t = 0 phương trình cho hai nghiệm
Với mỗi phương trình cho hai nghiệm thuộc
Vậy điều kiện cần tìm là phương trình (1) phải có hai nghiệm phân biệt
Chọn B.
Đáp án D
P T ⇔ m + 1 1 − c os 2 x 2 − sin 2 x + cos 2 x = 0 ⇔ sin 2 x + m − 1 2 c os 2 x = m + 1 2 .
PT có nghiệm ⇔ 1 2 + m − 1 2 2 ≥ m + 1 2 2 ⇔ m ≤ 1.
Vì m ∈ − 2018 ; 2018 ⇒ có 2020 giá trị nguyên của m.