OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tập huấn miễn phí ra đề kiểm tra và chấm phiếu trắc nghiệm dành cho giáo viên khối THCS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hàm sốf(x) liên tục trên R. Biết ∫ 0 1 f ( x ) d x = 1 và ∫ 3 1 f ( x ) d x = 2 .Giá trị của ∫ 0 3 f ( x ) d x là
A. 2
B. 16
C. -1
D. -4
Đáp án C
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m< e 2 .
B. 0<m< e 2 .
C. 0<m≤ e 2 .
D. m > e 2
Cho hàm số y=f(x) liên tục, không âm trên R thỏa mãn f ( x ) . f ' ( x ) = 2 x f ( x ) 2 + 1 và f(0)=0. Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y=f(x) trên đoạn [1;3] lần lượt là:
A. M=20;m=2
B. M = 4 11 ; m = 3
C. M = 20 ; m = 2
D. M = 3 11 ; m = 3
Cho hàm số y = f (x) thỏa mãn f(0) = 1, f'(x) liên tục trên R và ∫ 0 3 f ' ( x ) dx = 9 .Giá trị của f(3) là
A. 6
B. 3
C. 10
D. 9
Cho hàm số y = f (x) thỏa mãn f(0) = 1, f'(x) liên tục trên R và ∫ 0 3 f ' ( x ) d x = 9 . Giá trị của f(3) là
Đáp án C.
Cho biết y=f(x) là hàm số liên tục và xác định trên R|{1;3} và thỏa mãn đồng thời các điều kiện: f ' ( x ) = 1 ( x - 1 ) ( x - 3 ) ; f ( 0 ) = 2 f ( 2 ) = 4 f ( 4 ) = 4 Khi đó giá trị của biểu thức: f ( - 1 ) + f 3 2 + f 9 2 nằm trong khoảng?
A . 5 - 1 2 ln 7 18
B . 7 - 1 2 ln 7 18
C . 2 + 1 2 ln 7 18
D . 3 + 1 2 ln 7 18
Cho hàm số f(x) liên tục và có đạo hàm trên R \ 1 3 thỏa mãn các điều kiện sau: f ( x ) ( 3 x + 2 ) + f ' ( x ) ( 3 x - 1 ) = x 2 + 1 ; f ( 0 ) = - 3 Khi đó giá trị của ∫ 1 2 f ( x ) d x nằm trong khoảng nào dưới đây?
A. (0;1)
B. (1;2)
C. (3;4)
D. (2;3)
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f x > 0 , ∀ x ∈ R . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm phân thực biệt.
A. m > e
B. 0 < m ≤ 1 .
C. 0 < m < e .
D. 1 < m < e .
Cho hàm số f(x) liên tục trên R vàvà ∀ x ∈ [ 0 ; 2018 ] , ta có f(x)>0 và f(x).f(2018-x)=1 . Giá trị của tích phân I = ∫ 0 2018 1 1 + f ( x ) d x
A. 2018.
B. 0.
C. 1009.
D. 4016.
Cho hàm số f(x) liên tục trên R thỏa mãn điều kiện: f ( 0 ) = 2 3 , f ( x ) > 0 , ∀ x ∈ ℝ và f ( x ) . f ' ( x ) = ( 2 x + 1 ) 1 + f 2 ( x ) , ∀ x ∈ ℝ . Khi đó giá trị f(1) bằng:
Chọn C
Đáp án C