phân tích đa thức thành nhân tử x-y - căn bậc hai(x) - căn bậc hai(y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x\sqrt{y}-y\sqrt{x}\right)+\left(x-y\right)\)
\(=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{xy}+\sqrt{x}+\sqrt{y}\right)\)
\(x\sqrt{y}-y\sqrt{x}=\sqrt{x^2}.\sqrt{y}-\sqrt{y^2}.\sqrt{x}=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(\sqrt{x}+\sqrt{y}+\sqrt{xy}+1\)
\(=\sqrt{x}+\sqrt{y}+\sqrt{x}.\sqrt{y}+1\)
\(=\sqrt{x}\left(\sqrt{y}+1\right)+\left(\sqrt{y}+1\right)\)
\(=\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\)
\(=\left(x\sqrt{x}+y\sqrt{y}\right)+\left(x-y\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}+\sqrt{x}-\sqrt{y}\right)\)
\(x-y-\sqrt{x}-\sqrt{y}\\ =x-y-\left(\sqrt{x}+\sqrt{y}\right)\\ =\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\\ =\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)
=(x-y)-(căn x+căn y)
=(căn x-căn y)(căn x+căn y)-(căn x+căn y)
=(căn x+căn y)(căn x-căn y-1)
\(x-y-\sqrt{x}-\sqrt{y}\\ =\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\\ =\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)