Tìm tập xác định D của hàm số y = l n ( 1 - x ) 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
Đáp án C
Hàm số đã cho xác định khi và chỉ khi 2 - x > 0 <=> x < 2. Vậy D = ( - ∞ ; 2 )
a, ĐK: \(cos\left(x\right)\ne0\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\)
Vậy tập xác định của hàm số là: \(D=R\backslash\left\{\dfrac{\pi}{2}+k\pi,k\in Z\right\}\)
b, ĐK: \(cos\left(x+\dfrac{\pi}{4}\right)\ne0\Leftrightarrow x+\dfrac{\pi}{4}\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+k\pi\)
Vậy tập xác định của hàm số là \(D=R\backslash\left\{\dfrac{\pi}{4}+k\pi,k\in Z\right\}\)
c, ĐK: \(2-sin^2\left(x\right)\ne0\Leftrightarrow sin^2\left(x\right)\ne2\)
Vì \(0\le sin^2\left(x\right)\le1\Rightarrow sin^2\left(x\right)\ne2\forall x\)
Vậy tập xác định của hàm số là \(D=R\)
Đáp án D.
Ta có hàm số y = x − 1 − 7 có lũy thừa với số mũ nguyên âm là –7 nên cơ số x − 1 ≠ 0 ⇔ x ≠ 1