Cho hàm số y=f'(x) là dạng dường cong hình bên và f(-1)=-2, f(1)=1 khi đó phương trình f(x)=0 có bao nhiêu nghiệm?
A. 1
B. 2
C. 3
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Hàm số y = f ( x ) đạt cực tiểu tại x 0 = 0
Hàm số y = f ( x ) có ba điểm cực trị.
Phương trình f ( x ) = 0 có 4 nghiệm phân biệt
Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]
+ Trước tiên tịnh tiến đồ thị sang phải 2 đơn vị để được đồ thị hàm số y= f(x-2) .
Tiếp theo giữ phần đồ thị phía bên phải đường thẳng x= 2, xóa bỏ phần đồ thị phía bên trái đường thẳng x= 2.
Cuối cùng lấy đối xứng phần đồ thị vừa giữ lại ở trên qua đường thẳng x= 2. Ta được toàn bộ phần đồ thị của hàm số
y = f(|x-2|) (hĩnh vẽ bên dưới)
Dựa vào đồ thị hàm số y = f(|x -2|) , ta thấy đường thẳng y= -1/2 cắt đồ thị hàm số y = f(|x-2|) tại 4 điểm phân biệt khi và chỉ khi phương trình f(|x-2|) = -1/2 có 4 nghiệm phân biệt.
Chọn D.