Trên mặt phẳng Oxy, tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện z - 2 + z + 2 = 6 là
B. Đường thẳng y = 6.
D. Đường tròn tâm (0;2), bán kính bằng 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Gọi M(x; y) là điểm biểu diễn số phức z = x + yi, x, y ∈ R
Gọi A là điểm biểu diễn số phức 2
Gọi B là điểm biểu diễn số phức -2
Ta có: |z – 2| + |z + 2| = 10 ⇔ MB + MA = 10.
Ta có AB = 4.
Suy ra tập hợp điểm M biểu diễn số phức z là Elip với 2 tiêu điểm là A(2; 0), B( -2; 0) tiêu cự AB = 4 = 2c, độ dài trục lớn là 10 = 2a , độ dài trục bé là
Vậy tập hợp các điểm biểu diễn các số phức z thỏa mãn điều kiện |z – 2| + |z + 2| = 10 là elip có phương trình
Gọi z = a + bi với a , b ∈ R
Ta có 1 ≤ z - 2 i < 2 ⇔ 1 ≤ a 2 + b - 2 2 < 4
Vậy tập hợp các điểm M là hình tròn tâm I ( 0;2 ) và bán kính R = 2 đồng thời trừ đi hình tròn tâm I ( 0;2 ) bán kính R' = 1 . (Chúng ta thường nhầm lẫn giữa hai đáp án C và D )
Đáp án D
Đáp án D
Vậy tập hợp điểm M biểu diễn số phức z thỏa mãn điều kiện đầu bài là hình tròn tâm I(-1;0), bán kính R = 2
Chọn D.
Gọi
Ta có
Vậy tập hợp điểm biểu diễn các số phức z là đường tròn tâm I(1;-2) và bán kính R=5
Chọn A