Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng 2a. Tính bán kính R của mặt cầu ngoại tiếp hình chóp đã cho.
A. R = a 3 2
B. R = a 2 4
C. R = a 2
D. R = a 2 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
* Hướng dẫn giải:
Gọi H = A C ∩ B C , hình chóp tứ giác đều S.ABCD
⇒ S H ⊥ ( A B C D )
Dựng hình như bên với OP là đường trung trực của đoạn SD
⇒ SO = OA = OB = OC = OD = R
⇒ R = S O = S D . S P S H = S D 2 2 . S H
Ta có A H ⊥ B D A H ⊥ S H ⇒ A H ⊥ ( S B D )
Cạnh AC = 2a ⇒ AH = a
⇒ S H = a 3 S A = 2 a
Đáp án C.
* Hướng dẫn giải:
Gọi H = A C ∩ B C , hình chóp tứ giác đều S.ABCD
⇒ S H ⊥ ( A B C D )
Dựng hình như bên với OP là đường trung trực của đoạn SD
⇒ SO = OA = OB = OC = OD = R
⇒ R = S O = S D . S P S H = S D 2 2 . S H
Cạnh AC = 2a ⇒ A H = a ⇒ S H = a 3
Chon B.
Phương pháp:
Xác định trục của khối chóp sau đó dựng đường thẳng trung trực của một cạnh bên của khối chóp để tìm được tâm của mặt cầu. Từ đó tính bán kính mặt cầu.
Cách giải:
=>SO là trục của đường tròn ngoại tiếp tứ giác ABCD.
Trong mặt phẳng (SOA), vẽ đường trung trực của cạnh SA, cắt SO tại I.
=>I là tâm mặt cầu ngoại tiếp hình chóp.
Ta có:
Chọn C.
Phương pháp:
Xác định tâm mặt cầu ngoại tiếp hình chóp đều là giao của đường trung trực 1 cạnh bên và chiều cao của hình chóp.
Từ đó sử dụng tam giác đồng dạng để tính bán kính mặt cầu ngoại tiếp hình chóp đều.
Cách giải: