K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2016

Đặt \(x^{2\:}-2x+2=t\)

Được phương trình: \(\frac{t}{t+1}+\frac{t-1}{t}=\frac{1}{6}\)

Quy đồng và khử mẫu được: \(12t^2-6=t^2+t\)

<=> \(11t^2-t=6\)

r á. đến đó thỳ hk lm đk n~. pn xem lại đề đy na @@

28 tháng 1 2016

thiếu xíu: đặt x^2-2x+2=t

21 tháng 9 2019

a) \(\frac{2x}{x+2}+\frac{x+2}{2x}=2\)

\(\Leftrightarrow4x^2+\left(x+2\right)^2=4x\left(x+2\right)\)

\(\Leftrightarrow5x^2+4x+4=4x^2+8x\)

\(\Leftrightarrow5x^2+4x+4-4x^2-8x=0\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow x^2-2.x.2+2^2=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Rightarrow x=2\)

31 tháng 7 2019

\(x^2-2x+3=t\left(t\ge0\right)\)

\(pt\Leftrightarrow\frac{1}{t-1}+\frac{1}{t}=\frac{9}{2\left(t+1\right)}\)

\(\Leftrightarrow\frac{2t\left(t+1\right)}{2t\left(t^2-1\right)}+\frac{2\left(t^2-1\right)}{2t\left(t^2-1\right)}-\frac{9t\left(t-1\right)}{2t\left(t^2-1\right)}=0\)

\(\Leftrightarrow-5t^2+11t-2=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2\end{cases}}\)

28 tháng 2 2016

x=3n bạn ak

28 tháng 2 2016

nếu tìm x thì mk làm đc:

\(\frac{x}{3}+\frac{2x-6}{6}=2-\frac{x}{3}\)

\(\Leftrightarrow\frac{2x}{6}+\frac{2x-6}{6}=\frac{6}{x}-\frac{x}{3}\)

\(\Leftrightarrow\frac{2x+2x-6}{6}=\frac{6-x}{3}\)

\(\Leftrightarrow\frac{2x+2x-6}{6}=\frac{2\left(6-x\right)}{2.3}=\frac{12-2x}{6}\)

<=>2x+2x-6=12-2x

<=>4x-6=12-2x

<=>4x-2x=12-6

<=>2x=6<=>x=3

Vậy x=3

21 tháng 2 2020

\(ĐKXĐ:x\ne-1\)

Từ phương trình suy ra \(\frac{x^2-x+1}{x^3+1}+\frac{2x^2+1}{x^3+1}+\frac{2x^2\left(x-1\right)\left(x+1\right)}{x^3+1}=2x\)

\(\Leftrightarrow\frac{2x^4+x^2-x+2}{x^3+1}=2x\)

\(\Leftrightarrow2x^4+x^2-x+2=2x^4+2x\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\left(tmđk\right)\)

Vậy tập nghiệm của phương trình \(S=\left\{1;2\right\}\)

28 tháng 2 2020

Hướng dẫn:

a) Đặt : \(x^2-2x+1=t\)Ta có: 

\(\frac{1}{t+1}+\frac{2}{t+2}=\frac{6}{t+3}\)

b) Đặt : \(x^2+2x+1=t\)

Ta có pt: \(\frac{t}{t+1}+\frac{t+1}{t+2}=\frac{7}{6}\)

c)ĐK: x khác 0

Đặt: \(x+\frac{1}{x}=t\)

KHi đó: \(x^2+\frac{1}{x^2}=t^2-2\)

Ta có pt: \(t^2-2-\frac{9}{2}t+7=0\)

28 tháng 2 2020

a) Đặt \(x^2-2x+3=v\)

Phương trình trở thành \(\frac{1}{v-1}+\frac{2}{v}=\frac{6}{v+1}\)

\(\Rightarrow\frac{v\left(v+1\right)+2\left(v+1\right)\left(v-1\right)}{v\left(v+1\right)\left(v-1\right)}=\frac{6v\left(v-1\right)}{v\left(v+1\right)\left(v-1\right)}\)

\(\Rightarrow v\left(v+1\right)+2\left(v+1\right)\left(v-1\right)=6v\left(v-1\right)\)

\(\Rightarrow v^2+v+2v^2-2=6v^2-6v\)

\(\Rightarrow3v^2-7v+2=0\)

Ta có \(\Delta=7^2-4.3.2=25,\sqrt{\Delta}=5\)

\(\Rightarrow\orbr{\begin{cases}v=\frac{7+5}{6}=2\\v=\frac{7-5}{6}=\frac{1}{3}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2-2x+3=2\\x^2-2x+3=\frac{1}{3}\end{cases}}\)

+) \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

+)\(x^2-2x+3=\frac{1}{3}\)

\(\Rightarrow x^2-2x+\frac{8}{3}=0\)

Ta có \(\Delta=2^2-4.\frac{8}{3}=\frac{-20}{3}< 0\)

Vậy phương trình có 1 nghiệm là x = 1

25 tháng 7 2016

Tìm nhẩm nghiệm rồi nhân liên hợp