Cho hình chóp S.ABC có SB vuông góc với mặt phẳng ABC, đáy ABC là tam giác vuông cân đỉnh B cạnh huyền A C = a 2 , mặt bên (SAC) hợp với đáy một góc 60 ° . Tính thể tích khối chóp S.ABC.
A. 6 a 3 12
B. 6 a 3 6
C. 6 a 3 36
D. 6 a 3 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi M là trung điểm của AC thì góc của (SAC) và (BAC) bằng S M B ^ = 60 °
Ta có: tam giác ABC vuông cân tại B nên
B M = 1 2 A C = a 2 2 ⇒ S A B C = 1 2 B M . A C = 1 2 . a 2 2 . a 2 = a 2 2
Mặt khác, S B = B M . tan 60 ° = a 6 2
Vậy V = 1 3 . a 2 2 . a 6 2 = a 3 6 12
Đáp án C
Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)
suy ra S H ⊥ A B C
Ta có
S B , A B C = S B H ^ = 45 o ⇒ S H = B H = 1 2 A C = a 2 2 V S . A B C = 1 3 . a 2 2 . 1 2 a 2 = a 3 2 12
Đáp án D
Ta có:
Gọi I là trung điểm của SC. Theo định lí ba đường vuông góc ta có tam giác SAC vuông tại A, mà tam giác SBC vuông tại B nên I cách đều các đỉnh của hình chóp hay I là tâm mặt cầu ngoại tiếp hình chóp. Khi đó ta có bán kính: r = SC/2 = a
Chọn A