Cho hình chóp S.ABCD có SA ⊥ (ABCD), SA=a và đáy ABCD nội tiếp đường tròn bán kính bằng a. Bán kính mặt cầu ngoại tiếp hình chóp S.ABCD là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Theo định lí ba đường vuông góc ta có tam giác SBC, SDC lần lượt vuông tại B, D. Gọi I là trung điểm của SC. Từ các tam giác SAC, SBC, SDC vuông ta có:
Vậy I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD và bán kính mặt cầu là
Chọn D
Phương pháp: Xác định tâm của mặt cầu
ngoại tiếp khối chóp.
Đáp án D
Gọi O là tâm của hình chữ nhật ABCD và I là trung điểm của SC. Khi đó O I ⊥ ( A B C D )
⇒ I A = I B = I C = I D mà ∆ S A C vuông tại A I A = I S = I C . Do đó I là tâm mặt cầu ngoại tiếp khối chóp S.ABCD suy ra I A = a 2 ⇒ S C = 2 a 2 . Mặt khác AC là hình chiếu của SC trên mặt phẳng A B C D ⇒ S C ; A B C D ^ = S C ; A C ^ = S C A ^ = 45 ° .Suy ra ∆ S A C vuông cân ⇒ S A = A C = 2 a ⇒ V S . A B C D = 1 3 . S A . S A B C D = 1 3 . 2 a . a . a 3 = 2 a 3 3 3 .
Chọn D.
Phương pháp: Xác định tâm của mặt cầu ngoại tiếp khối chóp.
Cách giải: Gọi O là tâm của đáy. I là tâm của mặt cầu ngoại tiếp hình chóp. Dễ thấy I là trung điểm SC và S C A ^ = 45 °