K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

27 tháng 10 2018

Đáp án đúng : A

NV
7 tháng 8 2021

Với \(m=0\) ko thỏa mãn

Với \(m\ne0\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=-\dfrac{1}{\sqrt{m}}\)\(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=\dfrac{1}{\sqrt{m}}\)

\(\Rightarrow\) Hàm có 2 TCN khi \(\sqrt{m}\) xác định \(\Rightarrow m>0\)

5 tháng 1 2020

Ta có  đồ thị hàm số luôn có TCN y = 1

Do đó để ycbt thỏa mãn  

Chọn C.

14 tháng 12 2019

9 tháng 8 2019

3 tháng 6 2018

Điều kiện:mx2+1>0.                                    

- Nếu m=0 thì hàm số trở thành y=x+1  không có tiệm cận ngang.

- Nếu m<0 thì hàm số xác định  ⇔ - 1 - m < x < 1 - m

Do đó,   lim x → ± ∞ y  không tồn tại nên đồ thị hàm số không có tiệm cận ngang.

- Nếu m>0 hì hàm số xác định với mọi x.

Suy ra đường thẳng y =   1 m là tiệm cận ngang của đồ thị hàm số khi x → + ∞  .

 

Suy ra đường thẳng  y =   -   1 m là tiệm cận ngang của đồ thị hàm số.

Vậy m>0 thỏa mãn yêu cầu đề bài.

Chọn B.

10 tháng 12 2017

Đáp án D

Dễ thấy hàm số có 1 TCN y = 1.

Để hàm số có 1 TCĐ thì PT x 2 − x − m = 0  phải có 1 nghiệm x = 2 hoặc x= -2.

Vậy m ∈ 2 ; 6

15 tháng 4 2019

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Để hàm số có hai tiệm cận ngang thì m > 0.

Chọn D

30 tháng 5 2019

Đáp án C

Để hàm số có 2 tiệm cận ngang khi và chỉ khi lim x → ∞   y = a       ∀ a ∈ ℝ

Ta có lim x → ∞   x + 1 m x 2 + 1 = lim x → ∞   1 + 1 x m + 1 x 2 = 1 m .  Để lim x → ∞    y  xác định ⇔ 1 m  xác định hay m>0