K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

26 tháng 11 2017

Chọn C.

Phương pháp:

Thể tích của khối chóp ngoại tiếp hình chóp

Cách giải:

Gọi O là tâm của hình vuông ABCD, I là trung điểm của BC.

16 tháng 3 2018

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
23 tháng 5 2018

Đáp án A

15 tháng 12 2018

Đáp án A

Đặt a> 0 cạnh hình vuông là   Dễ  thấy  

Gọi O là tâm của đáy. Vẽ AH ⊥ SC tại, H, AH cắt SO tại I thì   A I O ^ = φ

Qua I vẽ  đường  thẳng  song  song DB cắt SD, SB theo  thứ  tự  tại K, L. Thiết diện chính là tứ giác

ALHK và tứ giác này có hai đường chéo AH  ⊥ KL Suy ra  

Ta có:  

Theo giả thiết

Giải được

Suy ra  φ = a r c sin 33 + 1 8

5 tháng 6 2018

Đáp án D

27 tháng 10 2017

Đáp án D

Gọi O là giao AC và BD, M là trung điểm CD

Vì S.ABCD là hình chóp đều

=> O là hình chiếu của S trên (ABCD)

Ta có: OM CD và SM CD

Vậy 

2 tháng 4 2018

Đáp án A.

Gọi O là tâm hình vuông ABCD, H là trung điểm AB.

⇒ A B ⊥ S H O ⇒ S A B ; A B C D ^ = S H ; O H ^ = S H O ^ = α . ⇒ c o s α = 1 3 ⇒ tan α = 3 x 2 − 1 = 2 2 ⇒ S O = tan α × O H = a 2 .

Kẻ CM vuông góc với SD M ∈ S D ⇒ m p P ≡ m p A C M .

Mặt phẳng A M C  chia khối chóp A.ABCD thành hai khối đa diện gồm M.ACD có thể tích là V 1  và khối đa diện còn lại có thể tích V 2 .

Diện tích tam giác SAB là S Δ S A B = 1 2 . S H . A B = a 2 . 3 a 2 = 3 a 2 4 .

S D = S O 2 + D O 2 = a 10 2 ⇒ S Δ . S C D = 1 2 . S H . S D ⇒ C M = 3 a 10 .

Tam giác MCD vuông tại M ⇒ M D = C D 2 − M C 2 = a 10 ⇒ M D S D = 1 5 .

Ta có:

V M . A C D V S . A C D = M D S D = 1 5 ⇒ V M . A C D = V S . A B C D 10 ⇔ V 1 = V 1 + V 2 10 ⇔ V 1 V 2 = 1 9 .

13 tháng 9 2018