K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2018

Đáp án D.

10 tháng 4 2018

b. 
y = x^4 + 2(m + 1)x^2 + 1 
y' = 4x^3 + 4(m + 1)x 
y'= 0=> x=0 và x^2 + (m + 1)= 0 (*) 
để đồ thị hàm số có 3 điểm cực trị thì (*) có 2 nghiệm phân biệt 
=> m+1<0 
<=> m< -1 
ta có: 
y= [4x^3 + 4(m + 1)x]*x/4+ (m+1)x^2+ 1 
y= y'*x/4+ (m+1)x^2+ 1 
đường cong đi qua các điểm cực trị thỏa mãn y'= 0 
=> pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1 

Vậy để đồ thị hàm số có 3 điểm cực trị thì m< -1 
và pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1

10 tháng 4 2018

b. 
y = x^4 + 2(m + 1)x^2 + 1 
y' = 4x^3 + 4(m + 1)x 
y'= 0=> x=0 và x^2 + (m + 1)= 0 (*) 
để đồ thị hàm số có 3 điểm cực trị thì (*) có 2 nghiệm phân biệt 
=> m+1<0 
<=> m< -1 
ta có: 
y= [4x^3 + 4(m + 1)x]*x/4+ (m+1)x^2+ 1 
y= y'*x/4+ (m+1)x^2+ 1 
đường cong đi qua các điểm cực trị thỏa mãn y'= 0 
=> pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1 

Vậy để đồ thị hàm số có 3 điểm cực trị thì m< -1 
và pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1

25 tháng 1 2019

Đáp án C

y = 1 4 x 4 − m x 2 + m 2 y ' = x 3 − 2 m x = x x 2 − 2 m

Để hàm số có 2 cực trị ⇔ x 2 − 2 m = 0  có hai nghiệm phân biệt khác 0

⇔ 2 m > 0 ⇔ m > 0

D 0 ; m 2 , B − 2 m ; 0 ; C 2 m ; 0

 

Gọi P : y = a x 2 + b x + c , ( a ≠ 0 )  là parabol đi qua 3 điểm cực trị D, B và C.

Suy ra  c = m 2 2 m a − 2 m b + m 2 = 0 2 m a + 2 m b + m 2 = 0 ⇔ c = m 2 a = − m 2 b = 0

Do đó  ( P ) : y = − m 2 x 2 + m 2

Vì  A ( 2 ; 24 ) ∈ ( P ) nên 

24 = − m 2 .4 + m 2 ⇔ m 2 − 2 m − 24 = 0 ⇔ m = − 4 ( L ) m = 6

27 tháng 4 2017

Chọn đáp án A

18 tháng 4 2017

Chọn đáp án D

Đồ thị hàm số có hai điểm cực trị khi và chỉ khi  k ≠ 1

Đường thẳng AB vuông góc với đường thẳng y = x + 2 khi và chỉ khi 

19 tháng 2 2021

a, - Xét phương trình hoành độ giao điểm :\(x^2=\left(m-2\right)x-m+3\)

\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\left(I\right)\)

\(\Delta=b^2-4ac=\left(m-2\right)^2-4\left(m-3\right)\)

\(=m^2-4m+4-4m+12=m^2-8m+16=\left(m-4\right)^2\)

- Để P cắt d tại 2 điểm phân biệt <=> PT ( I ) có 2 nghiệm phân biệt .

<=> \(\Delta>0\)

\(\Leftrightarrow\left(m-4\right)^2>0\)

\(\Leftrightarrow m\ne4\)

Vậy ...

b, Hình như đề thiếu giá trị của cạnh huỳnh hay sao á :vvvv

 

a) Phương trình hoành độ giao điểm là: 

\(x^2=\left(m-2\right)x-m+3\)

\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\)

\(\Delta=\left(m-2\right)^2-4\cdot\left(m-3\right)=m^2-4m+4-4m+12=m^2-8m+16\)

Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow m^2-8m+16>0\)

\(\Leftrightarrow\left(m-4\right)^2>0\)

mà \(\left(m-4\right)^2\ge0\forall m\)

nên \(m-4\ne0\)

hay \(m\ne4\)

Vậy: khi \(m\ne4\) thì (d) cắt (P) tại hai điểm phân biệt

13 tháng 5 2018

21 tháng 3 2023

TXĐ: D = R

\(y'=3x^2-6x=0\) \(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=2\Rightarrow y=-3\end{matrix}\right.\)

Suy ra 2 điểm cực trị của đồ thị là: A(0; 1) và B(2; -3)

Ptđt đi qua 2 điểm cực trị:

\(\dfrac{x}{2}=\dfrac{y-1}{-4}\) \(\Rightarrow-2x=y-1\) \(\Leftrightarrow y=-2x+1\left(d'\right)\)

Vì \(d\perp d'\) \(\Rightarrow\left(2m-1\right)\cdot\left(-2\right)=-1\) \(\Leftrightarrow m=\dfrac{3}{4}\)

Chọn B

5 tháng 2 2019

(P) đi qua điểm A (−2; 4) nên 4 = a. ( − 2 ) 2 = 4a  a = 1

Vậy phương trình parabol (P) là y   =   x 2 .

Để (P) tiếp xúc với (d) thì phương trình hoành độ giao điểm

x 2 = 2 (m – 1)x – (m – 1)có nghiệm kép

↔ ∆ ’ = [ − ( m – 1 ) ] 2   − m + 1 = 0 ↔ m 2 – 2m + 1 − m + 1 = 0 ↔ m 2 – 3m + 2 = 0 ↔ m=1 hoặc m=2

Nếu m = 1 thì hoành độ giao điểm là x = 0. Vậy tiếp điểm là (0; 0)

Nếu m = 2 thì hoành độ giao điểm là x = 1. Vậy tiếp điểm là (1; 1)

Đáp án: C