K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

Chọn B

6 tháng 12 2019

AH
Akai Haruma
Giáo viên
4 tháng 7 2017

Lời giải:

1.

Để ĐTHS có cực đại và cực tiểu thì \(y'=3x^2+2x+m+2=0\) có hai nghiệm phân biệt

\(\Leftrightarrow \Delta'=1-3(m+2)>0\Leftrightarrow m<\frac{-5}{3}\)

2.

ĐTHS có hai cực trị nằm về hai phía trục tung nghĩa là PT \(y'=3x^2+2x+m+2=0\) có hai nghiệm $x_1,x_2$ trái dấu.

Theo định lý Viete thì \(x_1x_2=\frac{m+2}{3}<0\Leftrightarrow m<-2\)

3. Áp dụng định lý Viete:

Cực trị với hoành độ âm thì: \(\left\{\begin{matrix} x_1+x_2=\frac{-2}{3}<0\\ x_1x_2=\frac{m+2}{3}>0\end{matrix}\right.\Leftrightarrow m>-2\Rightarrow -2< m<\frac{-5}{3}\)

4. Để ĐTHS có cực tiểu tại $x=2$ thì PT \(y'=3x^2+2x+m+2=0\) nhận $x=2$ là nghiệm \(\Leftrightarrow m=-18\)

Thử lại bằng bảng biến thiên ta thấy đúng.

12 tháng 6 2019

Chọn A

14 tháng 1 2017

3 tháng 1 2018

Chọn C

NV
5 tháng 7 2021

\(y'=3x^2-2\left(2m-1\right)x+2-m\)

Hàm có các cực trị dương khi pt \(y'=0\) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(2m-1\right)^2-3\left(2-m\right)>0\\x_1+x_2=\dfrac{2\left(2m-1\right)}{3}>0\\x_1x_2=\dfrac{2-m}{3}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-m-5>0\\m>\dfrac{1}{2}\\m< 2\end{matrix}\right.\) \(\Rightarrow\dfrac{5}{4}< m< 2\)