Cho hàm số y = 2 x + 2 x - 1 có đồ thị là (C). Viết phương trình tiếp tuyến của (C), biết tiếp tuyến tạo với hai tiệm cận một tam giác có chu vi nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Đồ thi hàm số đã cho co TCĐ là : x= -1 và TCN là y= 1; tâm đối xứng- giao của 2 đườg tiệm cận có tọa độ là I ( -1; 1)
Gọi M x 0 ; x 0 - 2 x 0 + 1 ∈ C , x 0 ≠ - 1 , I ( - 1 ; 1 )
+ Phương trình tiếp tuyến tại M có dạng
+ Giao điểm của ∆ với tiệm cận đứng là A - 1 ; x 0 - 5 x 0 + 1
+ Giao điểm của ∆ với tiệm cận ngang là B( 2x0+1; 1).
Ta có
Bán kính đường tròn ngoại tiếp tam giác IAB là S=p.r, suy ra
Suy ra,
Chọn D.
Vì tam giác IAB cân tại I nên tiếp tuyến phải song song với một trong 2 đường thẳng có phương trình \(y=x;y=-x\).
Ta có \(y'=\frac{1}{\left(x+2\right)^2}>0;x\ne-2\)
Mọi \(M\left(x_0;y_0\right)\) là tiếp điểm thì \(y'\left(x_0\right)=1\Leftrightarrow1=\frac{1}{\left(x_0+2\right)^2}\Leftrightarrow\left[\begin{array}{nghiempt}x_0=-1\\x_0=-3\end{array}\right.\)
Từ đó suy ra 2 tiếp tuyến là \(y=x+1;y=x+5\)
- Hàm số đã cho xác định với ∀x ≠ 1.
- Ta có:
- Gọi M ( x 0 ; y 0 ) là tọa độ tiếp điểm, suy ra phương trình tiếp tuyến của (C):
- Tiếp tuyến tạo với 2 trục tọa độ lập thành một tam giác cân nên hệ số góc của tiếp tuyến bằng ± 1. Mặt khác: y ' ( x 0 ) < 0 , nên có: y ' ( x 0 ) = - 1 .
- Vậy, có 2 tiếp tuyến thỏa mãn đề bài: y = -x - 1; y = -x + 7.
Chọn D
Chọn đáp án B
Đạo hàm
Đường thẳng ∆ là tiếp tuyến của đồ thị (C) tại ∆ nên có hệ số góc là
Phương trình ∆
Đồ thị (C) có đường tiệm cận đứng là ∆ 1 : x = - 1 và đường tiệm cận ngang là ∆ 2 : y = 1
Nửa chu vi tam giác IMN là
Dấu "=" xảy ra khi
Bán kính đường tròn nội tiếp tam giác IMN là
Đáp án C.
Ta có I 2 ; 1 .
Tiếp tuyến với C tại điểm M x 0 ; x 0 + 2 x 0 − 2 là d : y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2
Tọa độ A là nghiệm của hệ
y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 x = 2 ⇒ y = 4 x 0 − 2 + x 0 + 2 x 0 − 2 ⇒ A 2 ; x 0 + 6 x 0 − 2 ⇒ I A → = 0 ; 8 x 0 − 2
Tọa độ B là nghiệm của hệ
y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 y = 2 ⇒ x 0 − 2 2 = − 4 x − x 0 + x 0 2 − 4 ⇒ B 2 x 0 − 2 ; 1 ⇒ I B → = 2 x 0 − 4 ; 0 Do đó C I A B = π . A B = π I A 2 + I B 2 ≥ π 2 I A . I B
Mà I A . I B = 8 x 0 − 2 . 2 x 0 − 4 = 16 ⇒ C I A B ≥ 4 π 2