a
\(\sqrt{32}\)+\(\sqrt{50}\) - 2\(\sqrt{200}\) + 3\(\sqrt{72}\)
b)\(\dfrac{3}{\sqrt{ }2-1}\) + \(\sqrt{\left(3-\sqrt{2}\right)^{^2}}\) - 2\(\sqrt{2}\)
rút gọn các biểu thức trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2\sqrt{32}+3\sqrt{72}-7\sqrt{50}+\sqrt{2}\)
\(=2\cdot4\sqrt{2}+3\cdot6\sqrt{2}-7\cdot5\sqrt{2}+\sqrt{2}\)
\(=8\sqrt{2}+18\sqrt{2}-35\sqrt{2}+\sqrt{2}\)
\(=-8\sqrt{2}\)
b) \(\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|3-\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)
\(=3-\sqrt{3}+\sqrt{3}-2\)
\(=1\)
c) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)
\(=\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-3+\sqrt{2}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
d) \(x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)
\(=x-4+\sqrt{x^2-8x+16}\)
\(=x-4+\sqrt{\left(x-4\right)^2}\)
\(=x-4+\left|x-4\right|\)
\(=x-4+x-4\)
\(=2x-8\)
e) \(\dfrac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}\left(a< b\right)\)
\(=\dfrac{1}{a-b}\sqrt{\left[a^2\left(a-b\right)\right]^2}\)
\(=\dfrac{1}{a-b}\left|a^2\left(a-b\right)\right|\)
\(=\dfrac{-a^2\left(a-b\right)}{a-b}\)
\(=-a^2\)
a. \(\sqrt{48}-2\sqrt{32}-\sqrt{75}+3\sqrt{50}\) = \(4\sqrt{3}-2.4\sqrt{2}-5\sqrt{3}+3.5\sqrt{2}\)
= \(4\sqrt{3}-8\sqrt{2}-5\sqrt{3}+15\sqrt{2}\) = \(-\sqrt{3}+7\sqrt{2}\)
b. \(\sqrt{20}-15\sqrt{\dfrac{1}{5}}+\sqrt{\left(1-\sqrt{5}\right)^2}\) = \(2\sqrt{5}-3.5.\sqrt{\dfrac{1}{5}}+\left|1-\sqrt{5}\right|\)
= \(2\sqrt{5}-3\sqrt{25.\dfrac{1}{5}}+\sqrt{5}-1\) = \(2\sqrt{5}-3\sqrt{5}+\sqrt{5}-1\) = \(-1\)
c. \(\dfrac{3}{3+2\sqrt{3}}+\dfrac{3}{3-2\sqrt{3}}\) = \(\dfrac{3\left(3-2\sqrt{3}\right)+3\left(3+2\sqrt{3}\right)}{\left(3+2\sqrt{3}\right)\left(3-2\sqrt{3}\right)}\)
= \(\dfrac{9-6\sqrt{3}+9+6\sqrt{3}}{\left(3+2\sqrt{3}\right)\left(3-2\sqrt{3}\right)}\) = \(\dfrac{18}{9-12}=\dfrac{18}{-3}=-6\)
Vì đây toàn là số cụ thể rồi nên không có đkxđ bạn nhé.
Lời giải:
a.
$=\sqrt{2}+4\sqrt{2}+6\sqrt{2}-3\sqrt{2}=8\sqrt{2}$
b.
$=\frac{13(5-2\sqrt{3})}{(5+2\sqrt{3})(5-2\sqrt{3})}+2\sqrt{3}=\frac{13(5-2\sqrt{3})}{13}+2\sqrt{3}$
$=5-2\sqrt{3}+2\sqrt{3}=5$
c.
$=2\sqrt{5}-|2-\sqrt{5}|=2\sqrt{5}-(\sqrt{5}-2)=\sqrt{5}+2$
\(a,=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}\)
\(=\sqrt{2}\left(3-12+8-5\right)=-6\sqrt{2}\)
\(b,=\left|\sqrt{2}-\sqrt{3}\right|+3\sqrt{2}=\sqrt{3}-\sqrt{2}+3\sqrt{2}=\sqrt{3}+2\sqrt{2}\)
\(c,=\sqrt{5}+\sqrt{5}+\dfrac{5}{\sqrt{5}}-1=3\sqrt{5}-1\)
\(d,=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+1+\sqrt{3}=2\)
a) \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}=3\sqrt{2}-4\sqrt{9.2}+2\sqrt{16.2}-\sqrt{25.2}\)
\(=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}=-6\sqrt{2}\)
b) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}=\left|\sqrt{2}-\sqrt{3}\right|+\sqrt{9.2}=\sqrt{3}-\sqrt{2}+3\sqrt{2}\)
\(=2\sqrt{2}+\sqrt{3}\)
c) \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}=\sqrt{25.\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{9.5}+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}\)
\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-1=3\sqrt{5}-1\)
d) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}+\left|\sqrt{3}+1\right|\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{3}+1=\left|2-\sqrt{3}\right|+\sqrt{3}+1=2-\sqrt{3}+\sqrt{3}+1=3\)
Câu 1:
Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)
Câu 3:
Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)
\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)\)
\(=a-2\sqrt{a}\)
a)
\(\left(\dfrac{3+2\sqrt{3}}{\sqrt{3}+2}-\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\right)\left(\sqrt{3}+\sqrt{2}\right)\\ =\left(\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}+2\right)}-\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}+1\right)}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\\ =3-2\\ =1\)
b)
\(\left(2+\dfrac{11-\sqrt{11}}{1-\sqrt{11}}\right)\left(2+\dfrac{\sqrt{11}+11}{\sqrt{11}+1}\right)\\ =\left(2+\dfrac{\sqrt{11}\left(\sqrt{11}-1\right)}{-\left(\sqrt{11}-1\right)}\right)\left(2+\dfrac{\sqrt{11}\left(1+\sqrt{11}\right)}{\sqrt{11}+1}\right)\\ =\left(2-\sqrt{11}\right)\left(2+\sqrt{11}\right)\\ =4-11\\ =-7\)
a: \(=\left(\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{2+\sqrt{3}}-\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
=(căn 3-căn 2)(căn 3+căn 2)
=3-2=1
b: \(=\left(2-\dfrac{\sqrt{11}\left(\sqrt{11}-1\right)}{\sqrt{11}-1}\right)\left(2+\dfrac{\sqrt{11}\left(\sqrt{11}+1\right)}{\sqrt{11}+1}\right)\)
=(2-căn 11)(2+căn 11)
=4-11
=-7
\(x\ge0,x\ne9\)
\(A=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right]:\)
\(\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(A=\left[\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right].\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(A=\dfrac{-3\left(\sqrt{x}+1\right).\left(\sqrt{x}-3\right)}{\left(x-9\right)\left(\sqrt{x}+1\right)}=\dfrac{-3}{\sqrt{x}+3}\)
a: Ta có: \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}-\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\dfrac{8}{8+2\sqrt{15}}-\dfrac{8}{8-2\sqrt{15}}\)
\(=\dfrac{64-16\sqrt{15}-64-16\sqrt{15}}{4}\)
\(=\dfrac{-32\sqrt{15}}{4}=-8\sqrt{15}\)
b: Ta có: \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}\)
\(=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{-2}\)
\(=-\dfrac{6\sqrt{2}}{2}=-3\sqrt{2}\)
b) \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}=\dfrac{6\sqrt{2}}{-2}=-3\sqrt{2}\)
c) \(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right):\sqrt{28}=\dfrac{\left(\sqrt{7}+3\right)^2-\left(\sqrt{7}-3\right)^2}{\left(\sqrt{7}-3\right)\left(\sqrt{7}+3\right)}:\sqrt{28}=\dfrac{16+6\sqrt{7}-16+6\sqrt{7}}{7-9}=\dfrac{12\sqrt{7}}{-2}=-6\sqrt{7}\)
\(a.4\sqrt{2}+5\sqrt{2}-20\sqrt{2}+18\sqrt{2}=7\sqrt{2}\)
\(a,=4\sqrt{2}+5\sqrt{2}-20\sqrt{2}+18\sqrt{2}=7\sqrt{2}\\ b,=\dfrac{3\left(\sqrt{2}+1\right)}{1}+\left|3-\sqrt{2}\right|-2\sqrt{2}\\ =3\sqrt{2}+3+3-\sqrt{2}-2\sqrt{2}=6\)