Thể tích khí CO2 (đktc) sinh ra khi đốt cháy hoàn toàn 0,1 mol hỗn hợp gồm CH3COOCH3, HCOOC2H5 là
A. 2,24 lít.
B. 4,48 lít.
C. 3,36 lít.
D. 6,72 lít.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n_{hh}=\dfrac{11.2}{22.4}=0.5\left(mol\right)\)
\(n_{CH_4}=a\left(mol\right),n_{H_2}=b\left(mol\right)\)
\(\Rightarrow a+b=0.5\left(1\right)\)
\(n_{H_2O}=2a+b=\dfrac{12.6}{18}=0.7\left(mol\right)\left(2\right)\)
\(\left(1\right),\left(2\right):a=0.2,b=0.3\)
\(n_{CO_2}=n_{CH_4}=0.2\left(mol\right)\)
\(V=0.2\cdot22.4=4.48\left(l\right)\)
Bài 1 :
\(n_{H_2O}>n_{CO_2}\Rightarrow X:ankan\)
\(Đặt:CTHH:C_nH_{2n+2}\)
\(\dfrac{n}{2n+2}=\dfrac{0.1}{0.3}\Rightarrow n=2\)
\(Vậy:Xlà:C_2H_6\left(etan\right)\)
Bài 1
\(n_{CO_2} < n_{H_2O} \to\) X là ankan (CnH2n+2)
\(n_X = n_{H_2O} - n_{CO_2} = 0,15 - 0,1 = 0,05(mol)\)
Suy ra: \(n = \dfrac{n_{CO_2}}{n_X} = \dfrac{0,1}{0,05} = 2\)
Vậy X là C2H6(etan)
Bài 2 :
Hỗn hợp có dạng CnH2n+2
\(n_{hỗn\ hợp} = \dfrac{4,48}{22,4} = 0,2(mol)\\ n_{H_2O} = \dfrac{18}{18} = 1(mol)\\ \Rightarrow n + 2 = \dfrac{2n_{H_2O}}{n_{hh}} = 5\\ Suy\ ra\ n = 3\)
\(\Rightarrow n_{CO_2} = 3n_{hh} = 0,2.3 = 0,6(mol)\\ \Rightarrow V = 0,6.22,4 = 13,44(lít)\)
\(n_{O_2}=\dfrac{6,72}{22,4}=0,3\left(mol\right)\)
PT: \(S+O_2\underrightarrow{t^o}SO_2\)
Theo PT: \(n_{SO_2}=n_{O_2}=0,3\left(mol\right)\Rightarrow V_{SO_2}=0,3.22,4=6,72\left(l\right)\)
CH4 -> CO2
C2H6 -> 2 CO2
Gọi nCH4 = x mol, nC2H6 = y mol
x + y = 0,15 (1)
x + 2y = 0,2 (2)
Nên: x = 0,1 mol, y = 0,05 mol
Vậy: % VCH4 = 66,67 % => %VC2H6 = 33,33 %
\(n_{hh}=\dfrac{3,36}{22,4}=0,15mol\)
\(n_{CO_2}=\dfrac{4,48}{22,4}=0,2mol\)
\(\left\{{}\begin{matrix}n_{CH_4}=x\left(mol\right)\\n_{C_2H_2}=y\left(mol\right)\end{matrix}\right.\)
\(CH_4+2O_2\rightarrow CO_2+2H_2O\)
\(C_2H_2+\dfrac{5}{2}O_2\rightarrow2CO_2+H_2O\)
Từ hai pt trên:\(\Rightarrow\left\{{}\begin{matrix}x+y=0,15\\x+2y=0,2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0,1\\y=0,05\end{matrix}\right.\)
\(\%V_{CH_4}=\dfrac{0,1}{0,1+0,05}\cdot100\%=66,67\%\)
\(\%V_{C_2H_2}=100\%-66,67\%=33,33\%\)
\(n_{CO_2}=\dfrac{V_{CO_2}}{22,4}=\dfrac{4,48}{22,4}=0,2mol\)
Gọi \(n_{CH_4}\) là x \(\Rightarrow V_{CH_4}=22,4x\)
\(n_{C_2H_2}\) là y \(\Rightarrow V_{C_2H_2}=22,4y\)
\(CH_4+2O_2\rightarrow\left(t^o\right)CO_2+2H_2O\)
x x ( mol )
\(2C_2H_2+5O_2\rightarrow\left(t^o\right)4CO_2+2H_2O\)
y 2y ( mol )
Ta có:
\(\left\{{}\begin{matrix}22,4x+22,4y=3,36\\x+2y=0,2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0,1\\y=0,05\end{matrix}\right.\)
\(\Rightarrow V_{CH_4}=22,4.0,1=2,24l\)
\(\Rightarrow V_{C_2H_2}=22,4.0,05=1,12l\)
\(\%V_{CH_4}=\dfrac{2,24}{3,36}.100=66,67\%\)
\(\%V_{C_2H_2}=100\%-66,67\%=33,33\%\)
\(n_{CH_4} = a\ mol ;n_{C_2H_6} = b\ mol\\ \Rightarrow a + b = \dfrac{3,36}{22,4}= 0,15(1)\\ CH_4 + 2O_2 \xrightarrow{t^o} CO_2 + 2H_2O\\ C_2H_6 + \dfrac{7}{2}O_2 \xrightarrow{t^o} 2CO_2 + 3H_2O\\ n_{CO_2} = a + 2b = \dfrac{4,48}{22,4} = 0,2(2)\\ (1)(2) \Rightarrow a = 0,1 ;b = 0,05\\ \Rightarrow \%V_{CH_4} = \dfrac{0,1}{0,15}.100\% = 66,67\%\\ \%V_{C_2H_6} = 100\% - 66,67\% = 33,33\%\)
\(n_{CH_4}=a\left(mol\right),n_{C_2H_6}=b\left(mol\right)\)
\(\Rightarrow a+b=0.15\left(mol\right)\left(1\right)\)
\(n_{CO_2}=\dfrac{4.48}{22.4}=0.2\left(mol\right)\)
\(\Rightarrow a+2b=0.2\left(2\right)\)
\(\left(1\right),\left(2\right):a=0.1,b=0.05\)
\(\%CH_4=\dfrac{0.1}{0.15}\cdot100\%=66.67\%\)
\(\%C_2H_6=33.33\%\)
Đáp án D