Trong khai triển nhị thức a + 2 n + 6 n ∈ ℝ có tất cả 17 số hạng . Khi đó giá trị n bằng
A. 10
B. 11
C. 12
D. 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ \(\left(a+b\right)^k\Rightarrow k+1\left(so-hang\right)\)
\(\Rightarrow n+6+1=17\Rightarrow n=10\)
6/ \(\left(2a-1\right)^6=\sum\limits^6_{k=0}C^k_6.2^{6-k}.\left(-1\right)^k.a^{6-k}\)
\(\Rightarrow tong-3-so-hang-dau=C^0_6.2^6+C^1_6.2^5.\left(-1\right)+C^2_6.2^4.\left(-1\right)^2=...\)
7/ \(\left(x-\sqrt{y}\right)^{16}=\left(x-y^{\dfrac{1}{2}}\right)^{16}\)
\(\Rightarrow tong-2-so-hang-cuoi=C^{16}_{16}+C^{15}_{16}=...\)
Trong khai triển a + 2 n + 6 , n ∈ ℕ có tất cả n+6 +1 = n +7 số hạng.
Do đó n + 7 = 17 ⇔ n = 10 .
Chọn đáp án C
Đáp án A
Ta có a + 2 n + 6 = ∑ 0 n + 6 C n + 6 k a k 2 n + 6 − k có 17 số hạng nên n + 6 + 1 = 17 ⇒ n = 10