Tìm m để hàm số y = x 3 - x 2 + m x - 1 đồng biến trên (1,2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hàm số đồng biến trên R thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số, ta được:
m+3=5
hay m=2
a: Để hàm số đồng biến thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số,ta được:
\(m+3=5\)
hay m=2
a: Để hàm số đồng biến thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số,ta được:
\(m+3=5\)
hay m=2
Bài 1:
a: Để hàm số đồng biến khi x>0 thì m-1>0
hay m>1
b: Để hàm số nghịch biến khi x>0 thì 3-m<0
=>m>3
c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0
hay 0<m<1
a, đồng biến khi m - 1 > 0 <=> m > 1
b, nghịch biến khi 3 - m < 0 <=> m > 3
c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0
Ta có m - 1 < m
\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)
a: Để hàm số trên là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m\ge0\\m\ne4\end{matrix}\right.\)
b: Để hàm số đồng biến thì \(\sqrt{m}-2>0\)
hay m>4
a: Để hàm số đồng biến thì m-3>0
hay m>3
b: Thay x=-1 và y=1 vào (d), ta được:
-m+3+m-2=1
hay 1=1(đúng)
Bài 1:
Để hàm số y=(2-m)x-2 là hàm số bậc nhất thì 2-m<>0
=>m<>2
a=2-m
b=-2
Bài 2:
a: Để hàm số y=(m-5)x+1 đồng biến trên R thì m-5>0
=>m>5
b: Để hàm số y=(m-5)x+1 nghịch biến trên R thì m-5<0
=>m<5
Bài 3:
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3-m=2\\2\ne m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=1\)
b: Để (d1) cắt (d2) thì \(3-m\ne2\)
=>\(m\ne1\)
c: Để (d1) cắt (d2) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}3-m\ne2\\m=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne1\\m=2\end{matrix}\right.\)
=>m=2
\(y'=mx^2-2\left(m-1\right)x+3\left(m-2\right)\)
\(y'\ge0\) ; \(\forall x\ge2\)
\(\Leftrightarrow mx^2-2\left(m-1\right)x+3\left(m-2\right)\ge0\) ; \(\forall x\ge2\)
\(\Leftrightarrow mx^2-2mx+3m\ge6-x\)
\(\Leftrightarrow m\left(x^2-2x+3\right)\ge6-x\)
\(\Leftrightarrow m\ge\dfrac{6-x}{x^2-2x+3}\)
\(\Rightarrow m\ge\max\limits_{x\ge2}\dfrac{6-x}{x^2-2x+3}=\dfrac{4}{3}\)
Vậy \(m\ge\dfrac{4}{3}\)
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
y'=1/3*3x^2(m-1)-(m-1)2x+1
=x^2(m-1)-x(2m-2)+1
Để hàm số đồng biến trên R thì y'>0 với mọi x
=>m-1<>0 và (2m-2)^2-4(m-1)>0
=>m<>1 và 4m^2-8m+4-4m+4>0
=>4m^2-12m+8>0 và m<>1
=>m^2-3m+2>0 và m<>1
=>m>2 hoặc m<1
Chọn A