K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Chọn A.

Ta có: 

Hàm số y =  - x 3 - 3 x 2 + 9 x + 20  đồng biến khi và chỉ khi  

13 tháng 11 2023

loading...  loading...  loading...  

NV
22 tháng 6 2021

1.

\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)

Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)

2.

\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)

10 tháng 11 2017

6 tháng 8 2018

NV
6 tháng 9 2021

\(y'=-x^2+2\left(a-1\right)x+a+3\)

Hàm đồng biến trên khoảng đã cho khi với mọi \(x\in\left(0;3\right)\) ta có:

\(-x^2+2\left(a-1\right)x+a+3\ge0\)

\(\Leftrightarrow\left(2x+1\right)a\ge x^2+2x-3\)

\(\Rightarrow a\ge\dfrac{x^2+2x-3}{2x+1}\)

Xét hàm \(f\left(x\right)=\dfrac{x^2+2x-3}{2x+1}\) với \(x\in\left(0;3\right)\)

\(f'\left(x\right)=\dfrac{2\left(x^2+x+4\right)}{\left(2x+1\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến

\(\Rightarrow f\left(x\right)< f\left(3\right)=\dfrac{12}{7}\Rightarrow a\ge\dfrac{12}{7}\)

7 tháng 7 2017

Đáp án D

Dựa vào hình vẽ, ta thấy rằng

+ Đồ thị hàm số f '(x) cắt Ox tại 3 điểm phân biệt x 1 - 1 ; 0 , x 2 0 ; 1 , x 3 2 ; 3  

Và f '(x) đổi dấu từ - → +  khi đi qua x 1 , x 3 ⇒  Hàm số có 2 điểm cực tiểu, 1 điểm cực đại

+ Hàm số y = f(x) nghịch biến trên khoảng - 1 ; x 1  đồng biến trên x 1 ; x 2  (1) sai

+ Hàm số y = f(x) nghịch biến trên khoảng x 2 ; x 3  (chứa khoảng (1;2)), đồng biến trên khoảng x 3 ; 5  (chứa khoảng (3;5)) ⇒ 2 ; 3  đúng

Vậy mệnh đề 2,3 đúng và 1, 4 sai.

12 tháng 11 2023

1: TXĐ: D=R\{3}

\(y=\dfrac{x^2-6x+10}{x-3}\)

=>\(y'=\dfrac{\left(x^2-6x+10\right)'\left(x-3\right)-\left(x^2-6x+10\right)\left(x-3\right)'}{\left(x-3\right)^2}\)

=>\(y'=\dfrac{\left(2x-6\right)\left(x-3\right)-\left(x^2-6x+10\right)}{\left(x-3\right)^2}\)

=>\(y'=\dfrac{2x^2-12x+18-x^2+6x-10}{\left(x-3\right)^2}\)

=>\(y'=\dfrac{x^2-6x+8}{\left(x-3\right)^2}\)

Đặt y'<=0

=>\(\dfrac{x^2-6x+8}{\left(x-3\right)^2}< =0\)

=>\(x^2-6x+8< =0\)

=>(x-2)(x-4)<=0

=>2<=x<=4

Vậy: Khoảng đồng biến là [2;3) và (3;4]

7 tháng 10 2018

Đáp án là D

NV
18 tháng 6 2021

1.

\(y'=2cosx-2sin2x=2cosx-4sinx.cosx=2cosx\left(1-2sinx\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}cosx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}\\x=\dfrac{\pi}{6}\\x=\dfrac{5\pi}{6}\end{matrix}\right.\)

Hàm đồng biến trên các khoảng \(\left(0;\dfrac{\pi}{6}\right)\) và \(\left(\dfrac{\pi}{2};\dfrac{5\pi}{6}\right)\)

NV
18 tháng 6 2021

2.

Xét hàm \(f\left(x\right)=x^2-2x-3\)

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

\(f'\left(x\right)=2x-2=0\Rightarrow x=1\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;3\right)\)