Cho hàm số y=f(x) không phải là hàm hằng và ∀ x ∈ ℝ ta có f(-x)=-f(x). Gọi là đồ thị của hàm số. Chọn khẳng định đúng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Dựa vào đồ thị hàm số f ' ( x ) suy ra BBT của hàm số y = f(x)
Khẳng định 1, 2, 5 đúng, khẳng định 4 sai.
Xét khẳng định 3: Ta có:
f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) ⇒ f ( 3 ) - f ( 0 ) = f ( 1 ) - f ( 2 ) > 0
Do đó f ( 3 ) > f ( 0 ) ⇒ Vậy khẳng định 3 đúng.
Đáp án C
Ta có f ' x = 0 ⇔ x = 1 ; 2 ; 3 ⇒ hàm số có 3 điểm cực trị
Lại có g x = f x - m - 2018 ⇒ g ' x = f ' x = 0 ⇒ có 3 nghiệm phân biệt
Suy ra phương trình f x = m + 2018 có nhiều nhất 4 nghiệm
Xét y = f x + 1 ⇒ y ' = f ' x + 1 < 0 ⇔ [ x + 1 ∈ 1 ; 2 x + 1 ∈ 3 ; + ∞ ⇔ [ 0 < x < 1 x > 2
Suy ra hàm số y = f(x + 1) nghịch biến trên khoảng (0;1).
Đáp án là B
Từ đồ thị hàm số và phương trình f(x) = 1 có ba số thực a,b,c thỏa
-1 < a < 1 < b < 2 < c sao cho f(a) = f(b) = f(c) = 1. Do đó,
Dựa vào đồ thị hàm số y = f(x) ta có:
Do -1 < a < 1 nên đường thẳng y = a cắt đồ thị hàm số y = f(x) tại 3 điểm phân biệt. Do đó, f(x) = a có 3 nghiệm phân biệt.
Ta lại có, 1 < b < 2 nên đường thẳng y = b cắt đồ thị hàm số y = f(x) tại 3 điểm phân biệt khác. Do đó, f(x) = b có 3 nghiệm phân biệt khác các nghiệm trên.
Ngoài ra, 2 < c nên đường thẳng y = b cắt đồ thị hàm số y = f(x) tại 1 điểm khác các điểm trên. Hay f(x) = c có 1 nghiệm khác các nghiệm trên.
Từ đó, số nghiệm của phương trình f(f(x)) = 1 là m = 7
Chọn B