Tìm giá trị lớn nhất của hàm số y = x 3 − 2 x 2 + x + 1 trên đoạn [-1;1]
A. 1
B. 0
C. -1
D. 31/27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Với x ∈ − 2 ; 1 ta có
y = − x 2 + 2 ⇒ y ' = − 2 x ; y ' = 0 ⇔ x = 0.
Ta có y − 2 = − 2 ; y 0 = 2 ; y 1 = 1
Xét x ∈ 1 ; 3 ta có
y = x ⇒ y ' = 1 > 0.
Ta có y 3 = 3
Suy ra max − 2 ; 3 y = 3
Đáp án là C.
• Ta có: y , = 1 2 x + 1 - 1 2 3 - x , cho y , = 0 ⇔ x = 1 ∈ - 1 ; 3
• Tính được: y ( - 1 ) = 2 ; y ( 3 ) = 2 ; y ( 1 ) = 2 2
Vậy m a x y [ - 1 ; 3 ] = 2 2
=> Hàm số đã cho đồng biến trên đoạn [ 3; 15].
Hàm số đạt giá trị lớn nhất tại x= 15 và M= y (15) = 64
Chọn A.
Chọn A
Do đó hàm số đồng biến trên [3; 15]
Hàm số đạt giá trị lớn nhất tại x= 15 và M= y(15)=64.
Giá trị nhỏ nhất của hàm số trên đoạn [-2,3] là điểm thấp nhất của đồ thị trên đoạn đó. Vậy hàm số đạt giá trị nhỏ nhất tại x = -2. Thay x = -2 vào hàm số y đã cho ta có giá trị nhỏ nhất là -2.
Giá trị lớn nhất của hàm số trên đoạn [-2,3] là điểm cao nhất của đồ thị trên đoạn đó. Vậy hàm số đạt giá trị lớn nhất tại x = 3. Thay x = 3 vào hàm số y đã cho ta có giá trị lớn nhất là 3.
\(y'=\dfrac{3}{\left(x+2\right)^2}>0\Rightarrow\) hàm đồng biến trên đoạn đã cho
\(\Rightarrow\max\limits_{\left[0;1\right]}y=y\left(1\right)=0\)
Đáp án D
Ta có y ' = 3 x 2 − 4 x + 1 ⇒ y ' = 0 ⇔ x = 1 x = 1 3
Suy ra y − 1 = − 3 , y 1 3 = 31 27 , y 1 = 1 ⇒ max − 1 ; 1 y = 31 27