Gọi S là tập hợp tất cả các số tự nhiên k sao cho C 14 k , C 14 k + 1 , C 14 k + 2 theo thứ tự đó lập thành một cấp số cộng. Tính tích tất cả các phần tử của S.
A. 16
B. 20
C. 32
D. 40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
2 C 14 k + 1 = C 14 k + C 14 k + 2 ⇔ 2 . 14 ! ( k + 1 ) ! 13 - k ! = 14 ! 14 - k ! k ! + 14 ! ( k + 2 ) ! 12 - k ! 14 ! k ! 12 - k ! 2 13 - k k + 1 - 1 14 - k 13 - k - 1 k + 2 k + 1 = 0 ⇔ - 4 k 2 + 48 k - 128 = 0 ⇔ [ k = 8 k = 4
H = {1;3;5}; K = {0;1;2;3;4;5}
a) Vừa là tập con của tập H và K là các tập hợp con của H vì H \(\subset\) K
Đó là các tập {\(\phi\)}; {1}; {3}; {5}; {1;3}; {1;5}; {3;5}; {1;3;5}
b) M = {1;3;5;0} hoặc M = {1;3; 5; 4}; Hoặc M = {1;3;5;2};
a) Vì k là số tự nhiên nên :
- Nếu k = 0 thì 7 . k = 0, không phải số nguyên tố.
- Nếu k = 1 thì 7 . k = 7, là số nguyên tố.
- Nếu k \(\ge\) 2 thì 7 . k \(\in\) B(7), không phải số nguyên tố.
Vậy k = 1 thỏa mãn đề bài.
a) Điều kiện: k>0
Số nguyên tố là số có hai ước tự nhiên 1 và chính nó.
7k có các ước: 1,k và 7 (vẫn còn nếu k là hợp số)
Buộc k phải bằng 1 để thõa mãn yêu cầu đề bài
b) Từ đề trên thì chắc chắn a không là số chẵn.
Nếu k có dạng 3q thì:
+ k+6 chia hết cho 3 (loại)
Nếu k có dạng 3q+1 thì
+ k+14 = 3q + 15 chia hết cho 3 (loại)
Nếu k có dạng 3q+2 (>5)thì:
+ Nếu q chẵn thì 3q +2 chia hết cho 2 => k chia hết cho 2(loại)
+ Nếu q là 1 hợp số q có thể chia hết cho 3,5,7,9 (1)
Như vậy thì một trong các số trên đề sẽ là hợp số
Vậy q là 1 số nguyên tố khác 3,5,7 (do 1) và q cũng có thể bằng 1
=> k=3q+2 (với q bằng 1 và q là các số nguyên tố khác 3,5,7)
Đáp án C
2 C 14 k + 1 = C 14 k + C 14 k + 2 ⇔ 2. 14 ! ( k + 1 ) ! ( 13 − k ) ! = 14 ! ( 14 − k ) ! k ! + 14 ! ( 12 − k ) ! ( k + 2 ) ! 14 ! k ! ( 12 − k ) ! ( 2 ( 13 − k ) ( k + 1 ) − 1 ( 14 − k ) ( 13 − k ) − 1 ( k + 2 ) ( k + 1 ) ) = 0 ⇔ − 4 k 2 + 48 k − 128 = 0 ⇔ k = 8 k = 4