K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

Chọn đáp án C

Ta có  V S . A B C D = 1 3 S A . S A B C D = 3 a 3 3 (đvtt)

30 tháng 5 2019

Đáp án D

18 tháng 9 2019

11 tháng 9 2018

15 tháng 7 2018

 

Vẽ S H ⊥ A C  tại H.

Khi đó: ( S A C ) ⊥ ( A B C D ) ( S A C ) ⊥ ( A B C D ) = A C S H ⊂ ( S A C ) S H ⊥ A C

⇒ S H ⊥ ( A B C D ) ⇒ V = 1 3 S H . S A B C D

Theo đề ∆ S A C  vuông tại S nên ta có:

S C = A C 2 - S A 2 = 6 a 2

và  S H = S A . S C A C

= 2 a 2 . 6 a 2 2 a = 6 a 4

Vậy  V = 1 3 S H . S A B C D = 6 a 3 12

Chọn đáp án A.

 

20 tháng 8 2017

Đáp án A

24 tháng 9 2017

Chọn A.

Gọi H là trung điểm của CD, M là trung điểm của BC. Khi đó HM ⊥ BC, SM  ⊥ BC. Dễ thấy tam giác HBC vuông cân ở H, do đó tính được BC, SM. Từ đó tính được SH.

16 tháng 8 2023

Gọi M là trung điểm của AD. Suy ra SM vuông góc mặt phẳng (ABCD). 

a, Vì tam giác SAD là tam giác vuông cân 

\(\Rightarrow SA=SD=\dfrac{a}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}a\)

\(\Rightarrow SM=\sqrt{SA^2-AM^2}=\dfrac{1}{2}a\)

\(\Rightarrow V_{S.ABCD}=SM.S_{ABCD}=\dfrac{1}{2}a.a^2=\dfrac{1}{2}a^3\)

b, Qua M dựng đường thẳng MN song song với AB cắt BC tại N. Dựng MH vuông góc với SN. 

Dễ dàng nhận thấy BC vuông góc với (SMN) do \(SM\perp BC;MN\perp BC\)

\(\Rightarrow MH\perp BC\)

mà \(MH\perp SN\Rightarrow MH\perp\left(SBC\right)\Rightarrow MH\perp SC\)

Hay MH chính là khoảng cách giữa AD và SC (Do cùng vuông góc) 

Ta có: \(\dfrac{1}{MH^2}=\dfrac{1}{SM^2}+\dfrac{1}{MN^2}\Rightarrow\dfrac{1}{MH^2}=\dfrac{1}{\dfrac{1}{4}a^2}+\dfrac{1}{a^2}=\dfrac{5}{a^2}\Rightarrow MH=\dfrac{\sqrt{5}}{5}a\)

6 tháng 5 2017

Đáp án A

7 tháng 9 2018

Đáp án B

13 tháng 1 2017