Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ A B C D và S A = a 3 . Tính thể tích của khối chóp S.ABCD.
A. V = 3 a 3
B. V = a 3 4
C. V = 3 a 3 3
D. V = 3 a 3 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ S H ⊥ A C tại H.
Khi đó: ( S A C ) ⊥ ( A B C D ) ( S A C ) ⊥ ( A B C D ) = A C S H ⊂ ( S A C ) S H ⊥ A C
⇒ S H ⊥ ( A B C D ) ⇒ V = 1 3 S H . S A B C D
Theo đề ∆ S A C vuông tại S nên ta có:
S C = A C 2 - S A 2 = 6 a 2
và S H = S A . S C A C
= 2 a 2 . 6 a 2 2 a = 6 a 4
Vậy V = 1 3 S H . S A B C D = 6 a 3 12
Chọn đáp án A.
Chọn A.
Gọi H là trung điểm của CD, M là trung điểm của BC. Khi đó HM ⊥ BC, SM ⊥ BC. Dễ thấy tam giác HBC vuông cân ở H, do đó tính được BC, SM. Từ đó tính được SH.
Gọi M là trung điểm của AD. Suy ra SM vuông góc mặt phẳng (ABCD).
a, Vì tam giác SAD là tam giác vuông cân
\(\Rightarrow SA=SD=\dfrac{a}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}a\)
\(\Rightarrow SM=\sqrt{SA^2-AM^2}=\dfrac{1}{2}a\)
\(\Rightarrow V_{S.ABCD}=SM.S_{ABCD}=\dfrac{1}{2}a.a^2=\dfrac{1}{2}a^3\)
b, Qua M dựng đường thẳng MN song song với AB cắt BC tại N. Dựng MH vuông góc với SN.
Dễ dàng nhận thấy BC vuông góc với (SMN) do \(SM\perp BC;MN\perp BC\)
\(\Rightarrow MH\perp BC\)
mà \(MH\perp SN\Rightarrow MH\perp\left(SBC\right)\Rightarrow MH\perp SC\)
Hay MH chính là khoảng cách giữa AD và SC (Do cùng vuông góc)
Ta có: \(\dfrac{1}{MH^2}=\dfrac{1}{SM^2}+\dfrac{1}{MN^2}\Rightarrow\dfrac{1}{MH^2}=\dfrac{1}{\dfrac{1}{4}a^2}+\dfrac{1}{a^2}=\dfrac{5}{a^2}\Rightarrow MH=\dfrac{\sqrt{5}}{5}a\)
Chọn đáp án C
Ta có V S . A B C D = 1 3 S A . S A B C D = 3 a 3 3 (đvtt)