K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

Chọn đáp án A.

 

30 tháng 8 2017

Ta có 

Suy ra 

• Từ giả thiết hàm số không có cực trị, kết hợp với đồ thị suy ra hàm số luôn nghịch biến nên f'(x) < 0 với mọi x. Suy ra f'(x) - 2 < 0 với mọi x

• Phương trình f(x) = 2x có nghiệm suy nhất x = 1 (VT nghịch biến – VP đồng biến).

 

Bảng biến thiên 

Do đó đồ thị hàm số y = h(x) có điểm cực tiểu M(1;0) 

Chọn A.

9 tháng 11 2017

17 tháng 11 2017

24 tháng 11 2017

Chọn C.

Phương pháp: Tìm nghiệm và xét dấu g’(x).

20 tháng 7 2017

Chọn đáp án C.

28 tháng 10 2017

Đáp án C.

Ta có  ∀ x ∈ R

Khi đó 

Suy ra hàm số đồng biến trên khoảng (–1;0) và (1;+ ∞)

24 tháng 11 2019

Đáp án C

Suy ra hàm số đồng biến trên khoảng (-1;0) và  1 ; + ∞

7 tháng 2 2017

Đáp án là C

Các đồ thị hình vẽ bên chính là đồ thị của các hàm số lượng giác.

27 tháng 2 2019

Chọn B 

+ Với x= - 1: ta có : f’ (-1) = 0

  Giá trị của hàm số y= f’(x)  đổi dấu từ âm sang dương khi qua x= -1

=> Hàm số y= f(x) đạt cực  tiểu tại điểm x= -1

+ Tại điểm x=0 hoặc x= 2

- Đạo hàm tại 2 điểm đó bằng 0.

-  Giá trị của hàm  số y= f’(x) không đổi dấu khi đi  qua điểm đó. Nên x= 0; x= 2 không là điểm cực trị của hàm số