cho tam giác ABC , M là trung điểm của BC. CM:
\(1/2\)(AB+AC-BC)<AM>1/2(ab+ac)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét t/g AOB &t/g KOC, ta có:
OC=OB( O là TĐ của BC)
\(\widehat{AOB}\)=\(\widehat{KOC}\)
OA=OK(gt)
=> \(\Delta AOB=\Delta KOC\)(c-g-c)
=> AB= CK(2 cạnh t/ứ)
\(\widehat{BAO}\)=\(\widehat{CKO}\)(2gocs t/ứ)
mà chúng ở vị trí SLT
=>\(AB//Ck\)
Ta có:
\(AB\perp AC\)(\(\Delta ABC\)vuông tại A)
\(AB//CK\)
=> \(AC\perp Ck\)
=> \(\widehat{KCA}=\widehat{BAC}\left(=90^0\right)\)
Xét t/g vuông ABC &t/g vuông CKA, ta có:
AB=CK
AC chung
=> t/g vuông ABC= t/g vuông CKA(2cgv)
Cho 2 cái hình vì con chưa hc lp 8.
Bài 1
A B C M N
Bài 2 : G A B C M D E
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
=
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
QM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
tóm lị là ABGHMN là sai
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMEC
=>AB=EC
Ta có: ΔMAB=ΔMEC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
b: Ta có: AB//CE
AB\(\perp\)AC
Do đó: CE\(\perp\)CA
=>ΔCAE vuông tại C
c: Xét ΔABC vuông tại A và ΔCEA vuông tại C có
CA chung
AB=CE
Do đó: ΔABC=ΔCEA
d: ta có: ΔABC=ΔCEA
=>BC=EA
mà \(AM=\dfrac{1}{2}EA\)
nên \(AM=\dfrac{1}{2}BC\)
e: Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
f: Xét ΔMHC và ΔMKB có
MB=MC
\(\widehat{MBK}=\widehat{MCH}\)
BK=CH
Do đó: ΔMHC=ΔMKB
=>\(\widehat{HMC}=\widehat{KMB}\)
mà \(\widehat{KMB}+\widehat{KMC}=180^0\)(hai góc kề bù)
nên \(\widehat{HMC}+\widehat{KMC}=180^0\)
=>K,M,H thẳng hàng
a) Ta có M là trung điểm của BC, vậy BM = MC. Vì MA = ME, nên ta có MA = ME = MC. Do đó, tam giác MEC là tam giác đều.
Vì BM = MC và tam giác MEC là tam giác đều, nên ta có AB = EC và AB // EC.
b) Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90 độ.
Vì AB // EC, nên góc BAC = góc ECA.
Vậy tam giác ACE cũng là tam giác vuông tại C.
c) Tam giác ABC và tam giác CEA có cạnh chung AC và góc AEC = góc BAC = 90 độ (vì tam giác ABC là tam giác vuông tại A).
Vậy theo trường hợp góc - cạnh - góc, ta có tam giác ABC và tam giác CEA là hai tam giác đồng dạng.
d) Ta đã biết M là trung điểm của BC, vậy BM = MC.
Vì MA = ME, nên MA = MC/2.
Do đó, AM = 1/2 BC.
e) Ta đã biết AB = EC và AB // EC.
Vì MA = ME, nên MA = MC.
Vậy theo trường hợp cạnh - góc - cạnh, ta có tam giác MAC và tam giác MEC là hai tam giác đồng dạng.
Vậy AC = BE và AC // BC.
f) Trên BE lấy K, trên AC lấy H sao cho BK = CH.
Vì M là trung điểm của BC, nên MK = MC/2.
Vì tam giác MEC là tam giác đều, nên góc MCE = 60 độ.
Vậy góc MCK = 60 độ.
Vì BK = CH, nên góc BKC = góc CHB.
Vậy góc BKC = góc CHB = 60 độ.
Vậy tam giác BKC và tam giác CHB là hai tam giác đều.
Vậy 3 điểm K, M, H thẳng hàng.
1.
Xét tam giác BAC và tam giác FAE có:
BA = FA (gt)
BAC = FAE (2 góc đối đỉnh)
AC = AE (gt)
=> Tam giác BAC = Tam giác FAE (c.g.c)
=> BC = FE (2 cạnh tương ứng)
2.
Xét tam giác AMB và tam giác DMC có:
AM = DM (gt)
AMB = DMC (2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
=> Tam giác AMB = Tam giác DMC (c.g.c)
=> ABM = DCM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // DC
Xét tam giác AMC và tam giác DMB có:
AM = DM (gt)
AMC = DMB (2 góc đối đỉnh)
MC = MB (M là trung điểm của CB)
=> Tam giác AMC = Tam giác DMB (c.g.c)
=> AC = DB (2 cạnh tương ứng)
Xét tam giác ABC và tam giác DCB có:
AB = DC (tam giác AMB = tam giác DMC)
BC chung
AC = DB (chứng minh trên)
=> Tam giác ABC = Tam giác DCB (c.c.c)
bạn nhấn vào đúng 0 sẽ hiện ra kết quả, mình giải rồi dễ lắm