Cho d : x - 1 1 = y + 1 - 1 = z - 2 và P : 2 x + y - z - 1 = 0 . Gọi (d') là hình chiếu vuông góc của (d) xuống (P). Tính góc α giữa (d), (d').
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT
1
Những câu hỏi liên quan
PT
0
13 tháng 12 2021
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
AH
Akai Haruma
Giáo viên
23 tháng 8 2021
Lời giải:
Áp dụng BĐT Cô-si:
\(x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\geq \frac{1}{3}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2\geq \frac{1}{3}.(\frac{9}{x+y+z})^2=\frac{27}{(x+y+z)^2}\)
\(\Rightarrow P\geq \frac{(x+y+z)^2}{3}+\frac{27}{(x+y+z)^2}\)
Áp dụng BĐT Cô-si:
\(\frac{(x+y+z)^2}{3}+\frac{1}{3(x+y+z)^2}\geq \frac{2}{3}\)
\(\frac{80}{3(x+y+z)^2}\geq \frac{80}{3}\)
\(\Rightarrow P\geq \frac{2}{3}+\frac{80}{3}=\frac{82}{3}\)
Vậy $P_{\min}=\frac{82}{3}$ khi $x=y=z=\frac{1}{3}$
Chọn đáp án A