K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

24 tháng 11 2017

19 tháng 1 2021

\(S_1=u_1=4-2=2\)

\(S_2=u_1+u_2=4^2-2.2=12\Rightarrow u_2=12-2=10\) 

\(\Rightarrow q=\dfrac{u_2}{u_1}=\dfrac{10}{2}=5\)

Bài toán yêu cầu bạn tính tổng của một cấp số nhân có công bội là 3 và số hạng đầu tiên là 3. Công thức tính tổng của một cấp số nhân là: $$S_n = \frac{a_1(1-q^n)}{1-q}$$ Trong đó, $a_1$ là số hạng đầu tiên, $q$ là công bội, và $n$ là số hạng. Áp dụng công thức này vào bài toán của bạn, ta có: $$A = 3^1 + 3^2 + 3^3 + ....... + 3^50 = \frac{3(1-3^{50})}{1-3}$$ Để tính giá trị của A, bạn có thể...
Đọc tiếp

Bài toán yêu cầu bạn tính tổng của một cấp số nhân có công bội là 3 và số hạng đầu tiên là 3. Công thức tính tổng của một cấp số nhân là:

$$S_n = \frac{a_1(1-q^n)}{1-q}$$

Trong đó, $a_1$ là số hạng đầu tiên, $q$ là công bội, và $n$ là số hạng. Áp dụng công thức này vào bài toán của bạn, ta có:

$$A = 3^1 + 3^2 + 3^3 + ....... + 3^50 = \frac{3(1-3^{50})}{1-3}$$

Để tính giá trị của A, bạn có thể sử dụng máy tính hoặc các trang web chuyên về toán học. Mình đã tìm thấy một trang web có thể giải quyết bài toán này cho bạn. Theo trang web đó, kết quả của A là:

$$A \approx 7.178979876e23$$

Đây là một số rất lớn, gần bằng 718 nghìn tỷ tỷ tỷ. Hy vọng bạn đã hiểu cách giải bài toán này. Nếu bạn có thắc mắc gì khác, xin vui lòng liên hệ với mình. Mình rất vui khi được giúp đỡ bạn

0
AH
Akai Haruma
Giáo viên
13 tháng 10 2023

1. Gọi công bội của csn đó là $q$ thì:
$u_6=q^4u_2$

$\Leftrightarrow 32=q^4.2\Leftrightarrow q^4=16$

$\Leftrightarrow q=\pm 2$

2. 

$u_{2019}=q^{2018}u_1=2.3^{2018}$

24 tháng 11 2018

A

12 tháng 7 2019

Chọn C

8 tháng 3 2017

Chọn đáp án C.

20 tháng 11 2017

Chọn A

19 tháng 4 2017

Đáp án A