Cho một cấp số nhân có các số hạng đều không âm thỏa mãn u 2 = 6 , u 4 = 24. Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.
A. 3.2 12 − 3.
B. 2 12 − 1.
C. 3.2 12 − 1.
D. 3.2 12 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Em có: S = 1. q n − 1 q − 1 = q n − 1 q − 1 .
Vì cấp số nhân mới tạo thành bằng cách thay đổi mỗi số hạng của cấp số nhân ban đầu thành nghịch đảo của nó nên cấp số nhân mới sẽ có công bội là 1 q .
Gọi S' là tổng mới của cấp số nhân mới.
Em có: S ' = 1 q n − 1 1 q − 1 = 1 − q n q n . 1 − q q = 1 − q n 1 − q . 1 q n − 1 = S q n − 1 .
Vậy tổng của cấp số nhân mới là: S q n − 1 .
Đáp án B
Tổng của n số hạng đầu tiên của CSN với công bội q là
S n = u 1 . 1 - q n 1 - q
ở đây u 1 = 2 q = u 2 u 1 = - 1
Do đó S 10 = 2
Đáp án B
Tổng của n số hạng đầu tiên của CSN với công bội q là
Ta có: u 2 + u 23 = 60 ⇔ u 1 + d + u 1 + 22 d = 60 ⇔ 2 u 1 + 23 d = 60.
Khi đó S 24 = n 2 . 2 u 1 + ( n − 1 ) d = 24 2 2 u 1 + 23 d = 12.60 = 720.
Chọn đáp án C
Đáp án A