Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Biết HD = 2cm, HB = 6cm. Tính độ dài AD, AB (làm tròn đến hàng đơn vị).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BD = HD + HB
= 2 + 6
= 8 ( cm )
ABCD là hình chữ nhật
=> OA = OB = OC = OD = \(\frac{BD}{2}=\frac{AC}{2}=\frac{8}{2}=4\) \(\left(cm\right)\)
=> OH = OD – HD
= 4 - 2 = 2 ( cm )
\(\Delta AOD\)cân => AO = AD = 4 ( cm )
AD định lý py ta go cho tam giác ABD
BD2 = AB2 + AD2
=> AB2 = 82 - 42 = 64 - 16 = 48
=> \(AB\approx7\left(cm\right)\)
Kẻ đường chéo AC cắt BD tại O
Ta có: BD = DH + HB = 2 + 6 = 8 (cm)
\(AC=BD\Rightarrow OA=OB=OC=OD=\frac{BD}{2}=\frac{8}{2}=4\left(cm\right)\)
\(\Rightarrow OH=OD-HD=4-2=2\left(cm\right)\Rightarrow OH=HD\left(=2cm\right)\)
=> AH là đường trung tuyến của t/g OAD
Mà AH là đường cao của t/g OAD
=> t/g OAD cân tại A => OA = AD = 4 (cm)
Xét t/g ABD vuông tại A có: \(AB^2+AD^2=BD^2\) (định lí pytago)
\(\Rightarrow AB=\sqrt{BD^2-AD^2}=\sqrt{8^2-4^2}=\sqrt{48}\approx7\left(cm\right)\)
Ta có:
DB = HD + HB = 2 + 6 = 8 (cm)
AC = DB (tính chất hình chữ nhật)
OA = OB = OC = OD = 1/2 BD = 4 (cm)
OD = OH + HD
⇒ OH = OD – HD = 4 – 2 = 2 (cm)
Suy ra: OH = HD = 2 cm nên H là trung điểm của OD
Tam giác ADO có AH là đường cao đồng thời là đường trung tuyến nên tam giác ADO cân tại A
⇒AD = AO = 4 (cm)
Trong tam giác vuông ABD có ∠ (BAD) = 90 0
B D 2 = A B 2 + A D 2 (định lý Pi-ta-go) ⇒ A B 2 = B D 2 - A D 2
AB = B D 2 - A D 2 = 8 2 - 4 2 ≈ 7 (cm).