K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

Đáp án D

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

27 tháng 1 2019

Đáp án D

AC cắt (SBC) tại C , O là trung điểm AC =>khoảng cách 

* Trong (ABCD) dựng OH ⊥ BC, trong  (SOH) dựng OK SH ta chứng minh được OK  ⊥ (SBC)

=> khoảng cách  d(O,(SBC))= OK.

∆ O B C vuông tại OOH đường cao

∆ S O H  vuông tại O có OK đường cao 

Vậy 

15 tháng 5 2017

Đáp án A

10 tháng 4 2018

Giải bài 3 trang 104 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 104 sgk Hình học 11 | Để học tốt Toán 11

7 tháng 4 2019

Đáp án C

Kẻ O K ⊥ B C , O H ⊥ S K như hình vẽ khi đó OH là khoảng cách từ O tới (SBC)

Dễ thấy Δ A B D đều

⇒ O K = O B . sin 60 0 = a 2 . 3 2 = a 3 4

Ta có:  1 O H 2 = 1 O K 2 + 1 S O 2 = 16 3 a 2 + 1 a 2 = 19 3 a 2

⇒ O H = a 57 19

27 tháng 5 2018

9 tháng 12 2017

a: (SB;(ABCD))=(BS;BA)=góc SBA

b: (SO;(ABCD))=(OS;OA)=góc SOA

c: (SC;(SAD))=(SC;SD)

 

8 tháng 12 2018